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Abstract

We investigate the problem of bounding causal effects from
experimental studies in which treatment assignment is ran-
domized but the subject compliance is imperfect. It is well
known that under such conditions, the actual causal effects
are not point-identifiable due to uncontrollable unobserved
confounding. In their seminal work, Balke and Pearl (1994)
derived the tightest bounds over the causal effects in this set-
tings by employing an algebra program to derive analytic ex-
pressions. However, Pearl’s approach assumes the primary
outcome to be discrete and finite. Solving such a program
could be intractable when high-dimensional context variables
are present. In this paper, we present novel non-parametric
methods to bound causal effects on the continuous outcome
from studies with imperfect compliance. These bounds could
be generalized to settings with the high-dimensional context.

Introduction
One of the most common methods for policy learning used
throughout the empirical sciences is the use of randomiza-
tion of the treatment assignment. This method is consid-
ered the gold standard within many disciplines and can be
traced back, at least, to Fisher (Fisher 1935) and Neyman
(Neyman 1923). Whenever human subjects are at the center
of the experiment, unfortunately, issues of non-compliance
arise, namely, subjects do not necessarily follow the ex-
perimental protocol and end up doing what they want. It
is well-understood that under such conditions, confounding
bias will emerge. For instance, subjects who did not comply
with the treatment assignment may be precisely those who
would have responded adversely to the treatment. Therefore,
the actual causal effects of the treatment, when it is applied
uniformly to the population, might be substantially less ef-
fective than of the data reveals.

To cope with this bias, analysts may resort to exploit
theoretical assumptions underlying the interactions between
compliance and response (Wright 1928; Angrist, Imbens,
and Rubin 1996). The problem of identifying causal effects
from observed data provided with causal assumptions about
the data-generating mechanisms, represented in the form of
a directed acyclic causal diagram (Pearl 2000, Ch. 1.2), has
been extensively studied in the causal inference literature.
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Several criteria and algorithms have been developed (Pearl
2000; Spirtes, Glymour, and Scheines 2000; Bareinboim
and Pearl 2016). For example, a criterion called back-door
(Pearl 2000, Ch. 3.2.2) permits one to determine whether
causal effects can be obtained by covariate adjustment and
subsequent inverse probability weighting. This condition is
also known as conditional ignorability and unconfoundeness
(Rosenbaum and Rubin 1983). Efficient estimators were de-
veloped based on the propensity score (Rosenbaum and Ru-
bin 1983; Bang and Robins 2005) and off-policy learning
(Dudı́k, Langford, and Li 2011; Li, Munos, and Szepesvari
2015; Munos et al. 2016; Thomas and Brunskill 2016).

By and large, the combination of causal assumptions
and observational data does not always allow one to point-
identify the causal effect, called the non-identifiable. That
is, there exists more than one parametrization of the tar-
get effect that are compatible with the same observational
data and qualitative assumptions (Pearl 2000, Def. 3.2.2). A
causal effect is partially identifiable if it is not identifiable,
but the set of its possible values is smaller than the origi-
nal parameter space. Inferring about the treatment effect in
the partially identifiable settings has been a target of grow-
ing interest in the domains of causal inference (Balke and
Pearl 1995; Chickering and Pearl 1996; Richardson et al.
2014; Cinelli et al. 2019), and more recently, in machine
learning (Kallus and Zhou 2018; Kallus, Puli, and Shalit
2018). Among these works, two approaches are often em-
ployed: (1) bounds are derived for the target effect under
minimal assumptions; or (2) additional untestable assump-
tions are invoked under which the causal effect is identifi-
able, and then sensitivity analysis is conducted to assess how
the target causal effect varies as the untestable assumptions
are changed. This paper focuses on the bounding approach.

(Robins 1989; Manski 1990) derived the first informa-
tive bounds over the causal effects from studies with im-
perfect compliance, under a set of non-parametric assump-
tions called instrumental variables. In their seminal work
(Balke and Pearl 1994a, 1997), Balke and Pearl improved
earlier results by employing a computer algebraic program
to derive analytic expressions of the causal bounds, which
are provably optimal. Despite the optimality guarantees pro-
vided in their treatment, there are still significant challenges
in performing the partial identification of the causal effects
with the presence of instrumental variables. First, Pearl’s ap-



proaches assume the outcome is discrete and finite, which is
often not the case in many practical applications. Second, in
settings with the high-dimensional context, solving the for-
mulated program is often intractable due to computational
and sample complexity issues.

The goal of this paper is to overcome these challenges.
We investigate the partial identification of the causal effect
on the continuous outcome, with the presence of instrumen-
tal variables and the high-dimensional context. More specif-
ically, our contributions are as follows. (1) We identify a set
of novel non-parametric assumptions that explicate the in-
herent independence relationships among the latent counter-
factual variables (also called the potential outcomes) when
instrumental variables are present. (2) Using the proposed
model, we formulate the linear programs that bound the
target causal effect on the continuous outcome from stud-
ies with imperfect compliance, which is provable optimal.
(3) We provide efficient estimation procedures for the de-
rived bounds from finite observational sample under high-
dimensional context. Finally, we apply the derived causal
bounds to various bandit learning algorithms (Gittins 1979),
showing that they could consistently improve the conver-
gence for identifying the optimal treatment. Our results are
validated on the International Stroke Trial data (Carolei et al.
1997). Given the space constraints, all proofs are provided in
the full technical report (Zhang and Bareinboim 2020).

Preliminaries
In this section, we introduce the basic notations and defi-
nitions used throughout the paper. We use capital letters to
denote variables (X) and small letters for their values (x).
Let X stand for the domain of X and ∣X ∣ for its dimension.
We use P (x) to represent probabilities P (X = x).

The basic semantical framework of our analysis rests on
structural causal models (SCM) (Pearl 2000, Ch. 7). A SCM
M is a tuple ⟨U ,V ,F , P (u)⟩, where U is a set of exoge-
nous (unobserved) variables and V is a set of endogenous
(observed) variables. F is a set of structural functions where
fVi ∈ F decides the values of Vi ∈ V taking as argument a
combination of other endogenous and exogenous variables
(i.e., Vi ← fVi(PaVi , UVi),PaVi ⊆ V , UVi ⊆ U ). The val-
ues of U are drawn from the distribution P (u), inducing an
observational distribution P (v) over V . Each SCM is asso-
ciated with a causal diagram in the form of a directed acyclic
graph G, where nodes represent variables and arrows stand
for functional relationships (e.g., see Fig. 6). By convention,
whenever clear from the context, the exogenous U are left
implicit. The bi-directed arrows between Vi and Vj indicate
the existence of an unobserved confounder (UC) Uk affect-
ing both Vi and Vj , i.e., Vi ← Uk → Vj

An intervention on a set of endogenous variables X , de-
noted by do(x), is an operation where values of X are set
to constants x, regardless of how they were ordinarily de-
termined (through the functions {fX ∶ ∀X ∈ X}). For a
SCM M , let Mx be a modified sub-model of M under in-
tervention do(x). The potential outcome of Y to interven-
tion do(x), denoted by Yx(u), is the solution for Y with
U = u in the sub-model Mx; it can be read as the counter-
factual sentence “the value that Y would have obtained in
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Figure 1: Causal diagram of the instrumental variable (IV)
model: Z represents the (randomized) treatment assigned,
X the treatment actually received, and Y the outcome.

situation U = u, had X been x.” Statistically, averaging u
over the distribution P (u) leads to the interventional distri-
bution P (yx). For a detailed survey on the structural causal
models, we refer readers to (Pearl 2000, Ch. 7).

One fundamental problem in causal inference is to esti-
mate P (yx) from the combination of the observational dis-
tribution P (v) and causal diagram G. An interventional
distribution P (yx) is identifiable from G if for any pair
of SCMs M1 and M2 compatible with G, PM1

(yx) =
PM2(yx) whenever PM1(v) = PM2(v) (Pearl 2000, pp.
77). In other words, P (yx) are non-identifiable if there ex-
ists a pair of SCMs that give arise to the same P (v) and G
but induce different distributions P (yx).

New Bounds on Causal Effects
We will focus on the a special type of SCM called the instru-
mental variable (IV) models which represent experimental
studies with imperfect compliance (Pearl 2000, Ch. 8.2).
Fig. 6a shows the causal diagram of the IV model where Z
represents the (randomized) treatment assigned,X the treat-
ment actually received, and Y the observed outcome; ex-
ogenous variables U summarize the unknown factors about
an individual subject that affect both X and Y . The values
of Y are continuous, decided by a function y ← fY (x,u)
bounded in [0,1]. We assume Z,X are both finite. For each
Z = z, values of X are decided by an unknown mechanism
x ← fX(z,u). The data collected from the studies are sum-
marized as the observational distribution P (x, y∣z).

Given P (x, y∣z), we are interested in inferring the ex-
pected outcome on Y by of performing a treatment do(x),
i.e., the causal effect E[Yx]. Fig. 6 graphically describes
this learning settings. Unfortunately, the non-identifiability
of the treatment effect E[Yx] from the surrogate Z and
UCs between X and Y was shown in (Bareinboim and
Pearl 2012). To overcome this challenge, we will consider
the problem of partial identification in IV models (Manski
2003). Instead of pin-pointing the target quantity, the goal
of partial identification is to derive bounds on the parameter
space of the causal effect E[Yx] from the observational data
P (x, y∣z), called the causal bound.

Restricted Instrumental Variable Models
LetMIV[P (x, y∣z)] denote a set of IV models described in
Fig. 6a which are compatible with distribution P (x, y∣z);
therefore, for any M ∈ MIV[P (x, y∣z)], PM(x, y∣z) =
P (x, y∣z). We could derive causal bounds E[Yx] ∈ [lx, hx]



by solving the optimization problems as follows:

lx = min
M∈MOBS

EM [Yx]
hx = max

M∈MOBS

EM [Yx]
RRRRRRRRRRR MOBS =MIV[P (x, y∣z)] (1)

The challenge of solving Eq. (1) is that the parametric forms
of the exogenous variables U and structural functions F are
not explicitly specified.MIV[P (x, y∣z)] could be infinitely
large, making it hard to derive the bounds [lx, hx].

We will provide efficient methods to overcome this chal-
lenge. In particular, we propose a new non-parametric rep-
resentation for the pair U ,F . Let YX denote a vector of po-
tential responses (Yx0 , . . . , Yx∣X ∣−1) where each xi ∈ X and
let yX be its realizations; XZ = xZ is similarly defined. We
first describe a family of IV models where U ,F are well-
specified from counterfactuals XZ , YX .
Definition 1 (Restricted IV (RIV) Model). A restricted in-
strumental variable model is a SCM ⟨U ,V ,F , P (u)⟩ in
Fig. Fig. 6a where V = {X,Y,Z}, U = {XZ , YX }. Given a
vector xZ , xz is an element in xZ at the index zi = z; sim-
ilarly, yx is an element in yX at xi = x. Values of X,Y are
decided by functions fX , fY ∈ F defined as:

x← fX(z, xZ) = xz, y ← fY (x, yX ) = yx, (2)

Yxi are mutually independent given XZ , i.e., for any xi,

Yxi ⊥⊥ {Yxj ∶ ∀xj ≠ xi}∣XZ (3)

At first glance, the conditional independence among YX
in Def. 1 may be surprising since it seems to impose addi-
tional constraints about the exogenous U in the original IV
model. We will show in sequel that this restriction indeed
captures the natural properties of the optimization problem
in Eq. (1). Fig. 2a shows the graphical representation of a
RIV model. The square labeled with X indicates that there
are ∣X ∣ nodes Yxi of this kind. The counterfactuals XZ , YX
are the exogenous variables U affecting the treatmentX and
outcome Y , respectively. XZ , YX are correlated; each po-
tential reward node Yxi is d-separated from other nodes Yxj
where xj ≠ xi givenXZ (Pearl 2000, Def. 1.2.3). The coun-
terfactual distribution P (xZ , yX ) can be written as

P (xZ , yX ) = P (xZ) ∏
xi∈X P (yxi ∣xZ).

Let MRIV[P (x, y∣z)] denote a set of RIV models com-
patible with P (x, y∣z). We will show that solving Eq. (1)
is equivalent to optimizing E[Yx] over the feasible regionMOBS =MRIV[P (x, y∣z)].
Theorem 1. Given P (x, y∣z), for any IV model M1 ∈MIV[P (x, y∣z)], there exists an IV model M2 ∈MRIV[P (x, y∣z)] such that (s.t.)EM1[Yx] = EM2[Yx], and
vice versa.

Thm. 1 says that for any IV model M of Fig. 6a inducing
the observational data P (x, y∣z), we could always reduce it
into a RIV model inMRIV[P (x, y∣z)] while preserving its
treatment effects E[Yx]. Optimizing Eq. (1) within the fea-
sible regionMOBS = MRIV[P (x, y∣z)] thus induces causal
bounds E[Yx] ∈ [lx, hx]. The sharpness of [lx, hx] follows
immediately from Def. 1, i.e., there exist SCMs M1,M2 ∈MIV[P (x, y∣z)] such that EM1[Yx] = lx,EM2[Yx] = hx.
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Figure 2: Causal diagrams of (a) a RIV model where Yxi
are mutually independent givenXZ ; (b) an unrestricted RIV
model. The square labelled with X represents ∣X ∣ nodes of
which only a single example Yxi is shown explicitly.

A Linear Program Formulation
We now turn our attention to solving the optimization
problem in Eq. (1) within the feasible region MOBS =MRIV[P (x, y∣z)]. We will use probabilities P (xZ) and
E[Yxi ∣xZ]P (xZ) as unknown parameters. Basic proba-
bilistic properties and y ← fY (x,u) ∈ [0,1] imply:

∑
xZ

P (xZ) = 1, 0 ≤ E[Yxi ∣xZ]P (xZ) ≤ P (xZ) ≤ 1 (4)

By Def. 1, P (x, y∣z) could be written as linear combinations
of P (xZ) and E[Yxi ∣xZ]P (xZ) as

P (x∣z) = ∑
xZ

Ixz=xP (xZ), (5)

E[Y ∣x, z]P (x∣z) = ∑
xZ

Ixz=xE[Yx∣xZ]P (xZ). (6)

where I{⋅} is an indicator function. Similarly, the causal ef-
fects E[Yx] can be written as a linear function:

E[Yx] = ∑
xZ

E[Yx∣xZ]P (xZ).
Eq. (1) is reducible to linear programs (LP) optimizing the
objective function E[Yx] subject to probabilistic constraints
Eq. (4) and observational constraints Eq. (6), i.e.,

lx = minE[Yx]
hx = maxE[Yx]

RRRRRRRRRRR subject to Eqs. (4) to (6) (7)

Solving such a linear program leads to a valid causal bound
over the expected reward E[Yx].
Comparision with Existing Methods The idea of mod-
eling the exogenous variables U and functional relation-
ships in F using its projection to the latent counterfactu-
als XZ , YX has been explored in the literature, including
the canonical partition (Balke and Pearl 1994b) and princi-
pal stratification (Frangakis and Rubin 2002). These meth-
ods can be seen as a RIV model without the independence
restriction among YX (see Fig. 2b). For discrete X,Y,Z,
representing P (xZ , yX ) of this unrestricted model requires
a probability table of size O(∣X ∣∣Z ∣∣Y ∣∣X ∣); while a RIV
model (Def. 1) requires a table of only O(∣X ∣∣Z ∣+1∣Y ∣),
removing the exponential dependence on ∣X ∣. In addition,
our representation does not require a particular parametric
form of outcome (e.g., Y is discrete). This allows one to de-
rive causal bounds on the continuous outcome by employing
standard LP methods, which are provably optimal.



Contextual Settings
We now study the contextual IV (CIV) model shown in
Fig. 3a where an additional context C is now observed. We
denote by do(π(x∣c)) a stochastic intervention where val-
ues of treatment are decided following a conditional distri-
bution π(x∣c) mapping from C to X . The expected reward
E[Yπ(x∣c)] induced by do(π(x∣c)) is given by

E[Yπ(x∣c)] = ∑
x,c

E[Yx∣c]π(x∣c)P (c). (8)

We are interested in inferring the causal effect E[Yπ(x∣c)]
from the observational distribution P (x, y,c∣z). The non-
identifiability of this learning settings, shown in Fig. 3, has
been acknowledged in the causal inference literature (Tian
2008; Correa and Bareinboim 2019).

We thus consider the partial identification problem that
bounds E[Yπ(x∣c)] from P (x, y,c∣z) in CIV models.
Among quantities in Eq. (8), π(x∣c), P (c) are provided.
It is thus sufficient to bound the conditional causal ef-
fect E[Yx∣c]. LetMCIV[P (x, y,c∣z)] denote contextual IV
models that are compatible with the observational distribu-
tion P (x, y,c∣z). We show that the formulation of Def. 1 are
also applicable in the contextual settings.
Theorem 2. Given P (x, y,c∣z), fix a context C = c, for
any CIV model M1 ∈ MCIV[P (x, y,c∣z)], there exists an
IV model M2 ∈ MRIV[P (x, y∣c, z)] such that EM1[Yx∣c] =
EM2[Yx], and vice versa.

Thm. 2 implies that bounding E[Yx∣c] from P (x, y,c∣z)
in CIV models is equivalent to bounding E[Yx] from
the observational data P (x, y∣c, z) in RIV models. For
any M ∈ MCIV[P (x, y,c∣z)], one could always trans-
late it into a solution of Eq. (1) within the feasible regionMRIV[P (x, y∣c, z)]. Let E[Yx∣c] ∈ [lx(c), hx(c)] denote
the solutions of Eq. (1) withMOBS = MRIV[P (x, y∣c, z)].
Causal bounds E[Yπ(x∣c)] ∈ [lπ, hπ] are computable from[lx(c), hx(c)] following Eq. (8).
Theorem 3. Given P (x, y,c∣z), there exist CIV modelsM1,
M2 ∈ MCIV[P (x, y,c∣z)] such that EM1[Yπ(x∣c)] = lπ and
EM2[Yπ(x∣c)] = hπ .

Thm. 3 guarantees that [lπ, hπ] are optimal in CIV mod-
els. Suppose there exists a bound E[Yπ(x∣c)] ∈ [l′π, h′π]
strictly contained in [lπ, hπ]. We can always find CIV
models M1,M2 compatible with P (x, y,c∣z) while their
E[Yπ(x∣c)] lie outside [l′π, h′π], which is a contradiction.

The conditional bound E[Yx∣c] ∈ [lx(c), hx(c)] is ob-
tainable by solving Eq. (7) where observational constraints
P (x∣z),E[Y ∣x, z]P (x∣z) in Eq. (6) are replaced with con-
ditional quantities P (x∣c, z),E[Y ∣x, z,c]P (x∣z,c). Ap-
proximating solution to Eq. (7) generalizes the natural
bounds in (Manski 1990) to the contextual settings.
Theorem 4. For an CIV model M , given P (x, y,c∣z),
maxz lπ(z) ≤ E[Yπ(x∣c)] ≤ minz hπ(z) where

lπ(z) = ∑
x,c

E[Y ∣x,c, z]π(x∣c)P (x,c∣z),
hπ(z) = lπ(z) +∑

x,c

π(X ≠ x∣c)P (x,c∣z).
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Figure 3: Causal diagram of the contextual instrumental
variable (CIV) model: Z represents the (randomized) treat-
ment assigned, X the treatment actually received, and Y the
observed outcome; C is an additional observed context.

Estimation in High-Dimensional Context
Causal bounds developed so far are functions of the observa-
tional distribution, which are identifiable from the sampling
process, and so generally can be consistently estimated.
Howevers, computational and sample complexity challenges
could arise when context C is high-dimensional.

In this section, we will introduce robust estimation pro-
cedures to circumvent this issue. We first assume that
the models P̂ (x∣c, z) and Ê[Y I{X=x}∣c, z] of observa-
tional quantities P (x∣c, z) and E[Y I{X=x}∣c, z] are pro-
vided. Let {Xi, Yi,Ci, Zi}ni=1 denote finite samples drawn
from an observational distribution P (x, y,c, z). For a sam-
pled instance with context Ci, we could compute func-
tions lXi(Ci), hXi(Ci) by solving LPs in Eq. (7) with ob-
servational constraints P (x∣z),E[Y ∣x, z]P (x∣z) in Eq. (6)
replaced with P̂ (x∣Ci, z) and Ê[Y I{X=x}∣Ci, z]. Since
we consider only a fixed C = Ci, Eq. (7) could be
solved efficiently despite of dimensionalities of context
C. Thm. 2 ensures that the conditional causal effect
E[Yx∣Ci] ∈ [lx(Ci), hx(Ci)]. We could obtain causal
bounds E[Yπ(x∣c)] ∈ [lπ, hπ] by summing over finite sam-
ples. Formally, the empirical estimates l̂π, ĥπ of causal
bounds lπ, hπ are given by:

l̂π = 1

n

n∑
i=1

∑
x

π(x∣Ci)lx(Ci), ĥπ = 1

n

n∑
i=1

∑
x

π(x∣Ci)hx(Ci).
Lemma 1. If P̂ (x∣c, z) and Ê[Y I{X=x}∣c, z] are models of
P (x∣c, z) and E[Y I{X=x}∣c, z], l̂π, ĥπ are consistent esti-
mators of lπ, hπ .

When the models of P (x∣c, z) and E[Y I{X=x}∣c, z] are
not available, one could obtain an efficient approximation of
the causal bounds using the empirical estimates of the natu-
ral bounds in Thm. 4. For any Z = z, let n(z) = ∑ni IZi=z .
The estimators l̂π(z), ĥπ(z) are defined as follows:

l̂π(z) = 1

n(z)
n∑
i=1

YiIZi=zπ(Xi∣Ci),
ĥπ(z) = l̂π(z) + 1

n(z)
n∑
i=1

IZi=zπ(X ≠Xi∣Ci).
Lemma 2. l̂π(z), ĥπ(z) are consistent estimators of func-
tions lπ(z), hπ(z) defined in Thm. 4.

The causal effect E[Yπ(x∣c)] could then be bounded
from the finite samples {Xi, Yi,Ci, Zi}ni=1 by inequalities
maxz l̂π(z) ≤ E[Yπ(x∣c)] ≤ minz ĥπ(z).



Bandit Algorithms with Causal Bounds
The causal bounds derived so far may seem to be uninfor-
mative since they do not immediately identify the optimal
treatment in IV models. We will that this is not the case.
More specifically, we will introduce a systematic procedure
to incorporate causal bounds in online bandit algorithms
(Auer, Cesa-Bianchi, and Fischer 2002; Sen, Shanmugam,
and Shakkottai 2018; Audibert and Bubeck 2010) for identi-
fying the optimal treatment. Our analysis reveals that causal
bounds consistently improve the performance of bandit al-
gorithms in various learning settings.

For the IV model of Fig. 6(a), we denote by µx the
expected reward E[Yx] of performing a treatment do(x).
Let µ∗ = maxx µx and let x∗ denote the optimal treat-
ment (so, µx∗ = µ∗). An bandit algorithm learns the op-
timal treatment through repeated episodes of experiments
t = 1, . . . , T . At each episode t, the algorithm performs
an intervention do(Xt) and observes an outcome Yt. The
cumulative regret E[RT ] after T episodes is defined by
E[RT ] = Tµ∗ − ∑Tt=1E[Yt], i.e., the loss due to the fact
that the algorithm does not always play the optimal arm.
A desirable asymptotic property of an algorithm is to have
limT→∞E[RT ]/T = 0, meaning that the procedure con-
verges and finds the optimal treatment x∗.

We also consider the contextual IV model of Fig. 3(a).
Let Π be a finite set of candidate policies {π1, . . . , πN}. Let
µπ = E[Yπ(x∣c)] and let π∗ denote the optimal policy π∗ =
arg maxπi∈Π µπi . At each episode t = 1, . . . , T , a bandit al-
gorithm has access to a context Ct, picks a policy πt, as-
signs a treatment Xt following πt(x∣Ct) and observes a re-
ward Yt. Observational data P (x, y,c∣z) are provided prior
to the experiments. Similarly, the cumulative regret E[RΠ

T ]
after T episodes is defined as E[RΠ

T ] = Tµπ∗ −∑Tt=1E[Yt].
We will assess and compare the performance of bandit algo-
rithms in terms of the cumulative regrets.

Causal UCB
Our methods follow the well celebrated principle of opti-
mism in the face of uncertainty (OFU). This principle leads
to efficient bandit strategies, in the form of the upper con-
fidence bound (UCB) algorithms (Auer, Cesa-Bianchi, and
Fischer 2002). We will next describe UCB strategy in bandit
models with a set of candidate policies Π (an arm choice x
can be seen as a policy inX ). At each round t, a UCB agent
constructs a set of “plausible” modelsMt that are consistent
with the data. The agent then identifies the most “favorable”
model from Mt and prescribes the optimal policy for the
identified model. In practice, this decision is determined by
the concentration bounds over possible models. An upper
(lower) confidence bound Uπ(t) (Lπ(t)) for a policy π at
time t is the maximum (minimum) expected reward of π of
models inMt. The agent then prescribes a policy based on
Ux(t), Lx(t) and observes a reward.

We now incorporate causal bounds using the OFU prin-
ciple, called the Causal-UCB (for short, UCBc). Let µMπ

denote the expected reward of a policy π ∈ Π in model
M . At each round t, we obtain a subset Mc

t from Mt by
removing models inconsistent with the causal bounds, i.e.,

Algorithm 1: Causal-UCB (UCBc)
1: Input: Causal bounds {[lπ, hπ]}π∈Π.
2: for all t do
3: For each π ∈Π, compute Uπ(t), Lπ(t) as:

Uπ(t) = max{min{Uπ(t), hπ} , lπ} ,
Lπ(t) = max{min{Lπ(t), hπ} , lπ} , (9)

where Uπ(t), Lπ(t) are, respectively, the upper and
lower confidence bounds for policy π.

4: Play an arm do(Xt ∼ πt) and observe Yt.
5: end for

Mc
t = {M ∈ Mt ∶ µMπ ∈ [lπ, hπ]}. The agent then pre-

scribes a decision that is optimal to the most favorable model
in the subset Mc

t . When the causal bounds are beneficial
and significantly reduce the complexities of the search spaceMt, it is expected that a UCBc agent outperforms the stan-
dard (non-causal) method. Alg. 1 describes an implemen-
tation of UCBc in bandit settings. At trial t, we clip confi-
dence bounds Uπ(t), Lπ(t) using the causal bound [lπ, hπ].
The agent then proceeds ordinarily with the clipped bounds
Uπ(t), Lπ(t). Likewise, UCBc in IV models of Fig. 6a fol-
lows Alg. 1 with π replaced with arm x ∈ X .

For the remainder of this section, we will apply the UCBc
strategy (Alg. 1) to the state-of-the-art bandit algorithms,
showing its consistent improvements for various tasks. We
refer the interested readers to the technical report (Zhang
and Bareinboim 2020) for detailed implementations.

Multi-Armed Bandits We start with IV models of Fig. 6a.
(Cappé et al. 2013) proposed the kl-UCB procedure that
is applicable for bandit settings with bounded reward. It
computes confidence bound Ux(t) for each arm x using
Cramer’s theorem. The agent then plays an arm Xt with the
largest Ux(t). Let ∆x = µ∗ − µx and let X − be the sub-
set {x ∈ X ∶ µx < µ∗}. kl-UCB guarantees a bound on the
cumulative regret of:

E[RT ] ≤ ∑
x∈X−

( ∆x

kl(µx, µ∗)) log(T ) + o(log(T )), (10)

where kl(µx, µ∗) = µx log(µx/µ∗) + (1 − µx) log((1 −
µx)/(1−µ∗)), i.e., the Kullback-Leibler divergence between
Bernoulli distributions with mean µx and µ∗.

We applied Causal UCB strategy (Alg. 1) to kl-UCB by
replacing policy π with arm x ∈ X . We denote the resultant
algorithm kl-UCBc. At trial t, a kl-UCBc agent pulls an arm
Xt with the largest clipped confidence bound Ux(t) where
Ux(t) is obtained following Eq. (9). Let X −

hx≥c denote a
set {x ∈ X − ∶ hx ≥ c}. kl-UCBc guarantees the asymptotic
regret bound as follows:
Theorem 5. Given E[Yx] ∈ [lx, hx], the regret E[RT ] of
kl-UCBc after T ≥ 3 is bounded by

E[RT ] ≤ ∑
x∈X−

hx≥µ∗

( ∆x

kl(µx, µ∗)) log(T ) + o(log(T )).



SCMs IV models (Fig. 6) Contextual IV (Fig. 3)
Tasks Cumulative Regret E[RT ] Best-Arm Cumulative Regret E[RΠ

T ]
Standard O(∑x∈X− ( ∆x

kl(µx,µ∗)) log(T )) O(∑x∶X− ∆−2
x log(δ−1K log(∆−2

x ))) O(Cλ(Π−)M2 log(T ))
Causal O(∑x∈X−

hx≥µ∗
( ∆x

kl(µx,µ∗)) log(T )) O(∑x∶X−

hx≥µ1,2

∆−2
x log(δ−1K log(∆−2

x ))) O(Cλ(Π−
hπ≥µπ∗ )M2 log(T ))

Table 1: Summary of bandit results presented in this paper. “SCMs” represents the causal diagrams of the corresponding
learning settings. “Obj.” stands for the objective that the target agent aims to optimize. “Standard” stands for the asymptotics of
the standard UCB-style algorithms, “Causal” for the proposed strategy leveraging the observational distribution.

The regret bound in Thm. 5 is guaranteed to be smaller
than Eq. (10) ifX −

hx≥µ∗ is strictly contained inX −. This re-
sult coincides with the optimal regret of B-kl-UCB (Zhang
and Bareinboim 2017) when bounds over the expected re-
ward are provided. Since ∆x/kl(µx, µ∗) ≤ 1/(2∆x), the
improvement of kl-UCBc is significant when the gap ∆x of
x ∈ X −

hx<µ∗ is small and close to zero.

Best Arm Identification We also consider the settings of
pure exploration in IV models (Mannor and Tsitsiklis 2004).
Rather than looking at the cumulative regret, we are con-
cerned with PAC-style (“probably approximately correct”)
bound on the sample complexity to identify the optimal
treatment. In (Jamieson and Nowak 2014), a sampling strat-
egy, called lil’LUCB, were provided, which finds the opti-
mal arm with probability at least 1− 2+ε

ε/2 (log(1+ ε))−(1+ε)δ
in at most O(∑x∶X− ∆−2

x log(δ−1∣X ∣ log(∆−2
x ))) trials for

any ε ∈ (0,1) and δ ∈ (0, log(1 + ε)/e).
We apply Alg. 1 to lil’LUCB and denote the resulting al-

gorithm lil’LUCBc. Assume (without loss of generality) that
arms are ordered such that µ1 > µ2 ≥ ⋅ ⋅ ⋅ ≥ µN (so, µ∗ = µ1).
Let µ1,2 = (µ1 +µ2)/2. The following theorem provides the
sample complexity analysis of lil’LUCBc.
Theorem 6. Given E[Yx] ∈ [lx, hx], with proba-
bility (w.p.) at least 1 − 2+ε

ε/2 (log(1 + ε))−(1+ε)δ,
lil’LUCBc returns the optimal treatment x∗ withO(∑x∈X−

hx≥µ1,2

∆−2
x log(δ−1∣X ∣ log(∆−2

x ))) samples.

Compared with lil’LUCB, the sample complexity bound
in Thm. 6 is tighter if X −

µ1,2
⊂ X −.

Contextual Bandits Finally, we consider the regret mini-
mization in the contextual IV models of Fig. 3a. (Sen, Shan-
mugam, and Shakkottai 2018) proposed a UCB-style algo-
rithm for contextual bandits, called D-UCB, when a set of
stochastic policies π ∈ Π are provided, i.e., π(x∣z) > 0. At
each round t, D-UCB estimates Uπ(t) for each policy π us-
ing the concentration bounds of the clipped importance sam-
pling estimator (Sen, Shanmugam, and Shakkottai 2018),
and apply the policy with the highest Uπ(t) estimation.
Let M(πi, πj) denote the log divergence between two arbi-
trary policies πi, πj (Sen, Shanmugam, and Shakkottai 2018,
Def. 2), and let M = maxπi,πj∈ΠM(πi, πj). For any Π′ ⊆
Π, let policies in Π′ be ordered such that µπ1 ≥ µπ2 ≥ ⋯ ≥
µπn where n = ∣Π′∣. For any π ∈ Π, let ∆π = µπ∗ − µπ . We
define function λ(Π′) = ∆πnγ(∆πn)+∑n−1

i=1 ∆πi(γ(∆πi)−

γ(∆πi+1)), where γ(∆) = log2(6/∆)/∆2. Let Π− denote
the set of sub-optimal policies {π ∈ Π ∶ µπ < µπ∗}. D-UCB
obtains an asymptotic regret bound as follow:

E[RΠ
T ] ≤ Cλ(Π−)M2 log(T ) + o(log(T )), (11)

where C is a constant. We apply the causal strategy (Alg. 1)
to D-UCB and denote the new procedure D-UCBc. Let
Π−
hx≥c be a set of sub-optimal policies {π ∈ Π− ∶ hπ ≥ c}.

We now provides the regret bound of D-UCBc.
Theorem 7. GivenE[Yπ(x∣c)] ∈ [lπ, hπ], the regretE[RΠ

T ]
of D-UCBc after T ≥ 2 is bounded by

E[RΠ
T ] ≤ Cλ(Π−

hx≥µπ∗ )M2 log(T ) + o(log(T )). (12)

Compared with Eq. (15), the bound in Thm. 7 only differs
in the hardness measure λ(Π−

µπ∗
). The following lemma

guarantees that λ(Π−
µπ∗

) is never larger than λ(Π−).

Lemma 3. For any Π1 ⊂ Π2 ⊆ Π, λ(Π1) ≤ λ(Π2). If
∆π1 < ⋅ ⋅ ⋅ < ∆π∣Π∣ , λ(Π1) < λ(Π2).

Thm. 7, together with Lem. 3, says that D-UCBc improves
over D-UCB if there exists some sub-optimal π with hπ <
µπ∗ (given that µπ of each π ∈Π− are not all equal).

We summarize in Table. 1 the results discussed in this
section. “Standard” stands for the asymptotics of the stan-
dard algorithms and “Causal” is our strategy leveraging the
causal bounds obtained from the observation. The interest-
ing aspect is that the causal approach is guaranteed to rival
the standard algorithms, even when the observation is biased
towards the wrong decision. If the causal bounds are bene-
ficial (e.g., hx < µ∗), our approach could eliminate a sub-
optimal arm x (or policy π) early during the trials, thus out-
performing the standard methods. Such improvements could
be significant in more difficult instances, when the gap ∆x

between x and x∗ is small, e.g., close to zero.

Experiments: International Stroke Trials
We now use a real-world dataset to investigate the perfor-
mance of proposed bandit strategies. Specifically, we study
the International Stroke Trial (IST) (Carolei et al. 1997), fo-
cusing on the effect of the aspirin allocation X on a com-
posite score Y , a continuous value in [0,1] predicting the
likelihood of patients’ recovery. We also measure the pre-
treatment attributes U , including age, gender, and conscious
state. To emulate unobserved confounding, as discussed in
the paper, we filter the IST data following a inclusion rule
f(x∣z,u) and hide some columns of U . We repeat this pro-
cedure and generate observational samples using 4 different
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Figure 4: Simulations comparing solvers that are causally enhanced (kl-UCBc, lil’LUCBc, D-UCBc) and standard (kl-UCB,
lil’LUCB and D-UCB) on the International Stroke Trials data. Graphs are rendered in high resolution and can be zoomed in.

inclusion rules {f(x∣zi,u)}i=1...4. To evaluate the perfor-
mance of the different bandit strategies, we make bootstrap
estimates of the patient’s true response from the IST data.
For details on the experimental setups, we refer readers to
the full technical report (Zhang and Bareinboim 2020).

Multi-Armed Bandits The expected reward of not giv-
ing (X = 0) and giving aspirin (X = 1) are respectively
µ0 = 0.6201 and µ1 = 0.6948, suggesting an increased
chance of recovery from aspirin. The causal bounds µ0 ∈[0.5905,0.6506], µ1 ∈ [0.4839,0.7527] estimated using all
n = 9650 samples do not permit the identification of the
optimal treatment, since one is contained in the other. We
deploy a kl-UCBc agent provided with these causal bounds.
For comparison, we also include a standard kl-UCB agent,
a kl-UCBc agent with the causal bounds estimated using
300 samples (kl-UCBc−), and kl-UCB warm-started with
the empirical estimates of E[Y ∣x, z] (kl-UCB−). The re-
sults (Fig. 4a) reveal a significant difference in the cumu-
lative regret (CR) between kl-UCB (CR = 38.63) and kl-
UCBc (CR = 0.07); kl-UCBc− agent (CR = 37.94) coincides
with kl-UCB since the sample size n = 300 are not sufficient
for obtaining any informative estimate of the causal bounds
(Thm. 5); kl-UCB− (CR = 373.42) performs worst among
all strategies due to unobserved confounding.

Best Arm ID We also run the lil’LUCBc agent with
empirical bounds estimated from n = 9711 observations
(lil’LUCBc-all) to efficiently identify the optimal treatment
(X = 1). For comparison, we include the standard lil’LUCB,
lil’LUCBc with empirical bounds obtained from n = 100
observations (lil’LUCBc-100), and lil’LUCB warm-started
with estimates of E[Y ∣x] from observations (lil’LUCBo).
The stopping times T of each algorithm are compared in
Fig. 4(b). We can immediately note a dramatic difference
in the sample complexities experienced by lil’LUCBc (T =
4.4 × 103) compared to lil’LUCB (T = 6.5 × 103) and
lil’LUCBc-100 (T = 6.5 × 103). lil’LUCBo (T = 8.2 × 103)
performs worst among all algorithms.

Contextual Bandits Suppose we now have access to a
context C = {sex}. Our goal is to find the optimal treat-

ment among two policies π0(x∣c) and π1(x∣c). We also in-
clude experiments for more involved candidate policies in
the technical report (Zhang and Bareinboim 2020). We esti-
mate causal bounds over µπ using n = 9650 observational
samples and provide them to a D-UCBc agent. For com-
parision, we include the standard D-UCB, D-UCBc with
causal bounds from n = 300 samples (D-UCBc−), and D-
UCB seeded with samples of confounded observations (D-
UCB−). The cumulative regrets (CR) of each strategy are
measured and compared in Fig. 4c. The analysis reveals a
significant difference in CR experienced by D-UCBc(CR =
0.07) compared to D-UCB (CR = 111.8) and D-UCBc− (CR
= 110.8). Unsurprisingly, D-UCB− (CR = 153.9) performs
worst among all strategies.

These results corroborate with our findings: useful infor-
mation could be extracted from the confounded, passively-
collected data to improve the performance of a learning
agent. The causal approaches (e.g, kl-UCBc) dominate the
standard, non-causal methods (kl-UCB) given sufficient ob-
servational samples. When the number of observations is not
statistically significant, our approaches could still rival the
standard methods, i.e., no negative transfer occurs.

Conclusions
In this paper, we investigated the problem of bounding
causal effects from experimental studies in which treatment
assignment is randomized but the subject compliance is im-
perfect. Under such conditions, the actual causal effects
are not identifiable due to uncontrollable confounding. In
particular, we derived informative bounds over the causal
effect and accounted for challenging issues due to high-
dimensional context and the lack of discreteness. We incor-
porated these bounds into UCB-like algorithms and proved
that the causal approach, leveraging observational data, con-
sistently dominates non-causal, state-of-the-art procedures.
We hope that our framework can be useful in practical set-
tings since, even though imperfect, observational data con-
tains causal information and is abundantly available.
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Appendix 1. Algorithm Details
In this section, we provide details of the bandit algorithms
proposed in the paper. We will denote µ̂x(t) the empiri-
cal mean estimator of the expected reward µx and Nx(t)
the number of times arm x is pulled till round t. Similarly,
Nπ(t) represent the number times policy π has been invoked
till round t.

Stochastic Multi-Armed Bandits We describe kl-UCBc
in Alg. 2. At Step 3, f(t) is a non-increasing function re-
garding t, which we set as f(t) = log(t) + 3 log(log(t))
in the analysis. The clipped confidence bound Ux(t) is ob-
tained from Ux(t) and the causal bound [lx, hx] following
Eq. 1 in UCBc (Alg. 1).

Best-Arm Identification The procedure of lil’LUCBc is
described in Alg. 3. At Step 2, the unclipped bounds
Ux(t), Lx(t) rely on the finite form of the law of iter-
ated logarithm (Jamieson et al. 2014). Specifically, for any
ε ∈ (0,1) and δ ∈ (0, log(1 + ε)/e),

Ux(t) = µ̂x(t) + f(Nx(t), δ),
Lx(t) = µ̂x(t) − f(Nx(t), δ). (13)

where function f(n, δ) is equal to

(1 +√
ε)

√(1 + ε) log(∣X ∣δ−1 log((1 + δ/∣X ∣)n))
2n

. (14)

Contextual Bandits We will use the importance sampling
estimators µ̂π(t) used in (Sen, Shanmugam, and Shakkot-
tai 2018) for estimating the expected reward of a policy π.
We first introduce the notion of log-divergence between two
arbitrary policies πi, πj ∈Π.
Definition 2 (Log-Divergence). Consider the function
f(x) = xex−1. We define the log-divergence M(πi, πj) be-
tween two arbitrary policies πi, πj ∈Π as

M(πi, πj) = 1 + log(1 +∑
x,z

f(πi(x∣z)
πj(x∣z))πj(x∣z)P (z)).

During the execution of D-UCBc, we keep track of
the experimental history as {Xt, Yt, Zt, πt} where πt
is the selected policy at time t. We set Zπ(t) =∑π′∈ΠNπ′(t)/M(π,π′). The importance sampling estima-
tors µ̂π(t) of a policy π at time t is defined as:

µ̂π(t) = 1

Zπ(t)
t∑
i=1

1

M(π,πi)Yi π(Xi∣Zi)
πi(Xi∣Zi)

⋅ I{ π(Xi∣Zi)
πi(Xi∣Zi) ≤ 2 log( 2

ε(t))M(π,πi)},
where I{⋅} is an indicator function. ε(t) is an adjustable
terms that controls the bias-variance trade-off for the esti-
mator, which we as 2/t in our implementation.

The procedure of D-UCBc is described in Alg. 4. At Step
4, the upper confidence bound Uπ(t) for policy π is defined
as:

Uπ(t) = µ̂π(t) + 3

2
β(t). (15)

where β(t) is chosen such that

β(t)
log(2/β(t)) =

√
Ct log(t)
Zπ(t) (16)

We pick C = 16 in the analysis.
In practice, however, it is difficult to derive a closed-form

solution for β(t) in Eq. 16. We follow the implementation of



Algorithm 2: kl-UCBc

1: Input: A list of bounds over µx: {[lx, hx]}x∈X
2: Pull each arm of x ∈ X once
3: for all t = ∣X ∣ + 1 to T do
4: For each arm x ∈ X , let

Ux(t) = sup{µx ∈ [0,1] ∶ kl(µ̂x(t), µx) ≤ f(t)/Nx(t)}

5: Compute the clipped bound Ux(t) following Eq. 1, where
6: Pick an arm Xt = arg maxx∈X Ux(t).
7: end for

Algorithm 3: lil’LUCBc

1: Input: ε ∈ (0,1), δ ∈ (0, log(1 + ε)/e), bounds over
µx ∶ {[lx, hx]}x∈X .

2: repeat
3: For each arm x ∈ X , compute Ux(t), Lx(t) following

Eqs. 13-14.
4: Compute the clipped bounds Ux(t), Lx(t) following Eq. 1.
5: Let xh, xl be two arms with the largest Ux(t), i.e.,

xh, xl = arg
2

max
x

Ux(t). Sample each of xh, xl once.

6: until Lxh(t) > Uxl(t)
7: return xh

(Sen, Shanmugam, and Shakkottai 2018) and approximate
β(t) using

β(t) ≈ (c1t log(t)
(Zπ(t))2

)
1

2+ε

,

where ε is small number in (0,1), which we set as ε = 1 ×
10−5.

Appendix II. Proofs
In this section, we provide proofs of results in the paper.
We first introduce some necessary notations. For all n > 1,
let µ̂x(t) be the empirical estimation of µx, let Nx(t) be
the number of times arm x is pulled till round t, and let τx,n
denote the round at which xwas pulled for the n-th time, For
reward samples from arm x, denoted by {Yx,0, . . . , Yx,n},
define µ̂x,n = 1

n ∑ns=1 Yx,s. We of course have the writing
µ̂x(t) = µ̂x,Nx(t).
Proofs of Theorems 1-2
Proof of Theorem 1. Given a SCM M1 ∈ MIV [P (x, y∣z)],
we will translate it to a M2 ∈ MRIV [P (x, y∣z)] while pre-
serving the treatment effect E[Yx]. We define a RIV model
M2 such that PM2(xZ) = PM1(xZ) and PM2(yxi ∣xZ) =
PM1(yxi ∣xZ). PM1(x, y∣z) can be written as:

PM1(x, y∣z) = ∑
xZ

Ixz=x∑
u

IYx(u)=y,XZ(u)=xZPM1(u)
= ∑
xZ

Ixz=xPM1(yx∣xZ)PM1(xZ)
= ∑
xZ

Ixz=xPM2(yx∣xZ)PM2(xZ) = PM2(x, y∣z)

Algorithm 4: D-UCBc

1: Input: A list of bounds over µπ: {[lπ, hπ]}π∈Π
2: For t = 1, play an arm following an arbitrary policy π ∈Π.
3: for all t = 2 to T do
4: Observe context Zt.
5: For each policy π ∈Π, compute Uπ(t) following Eq. 15.
6: Compute the clipped bound Uπ(t) following Eq. 1.
7: Play Xt ∼ πt(Xt∣Zt) where πt = arg maxπ∈ΠUπ(t).
8: end for

Similarly, we have EM1[Yx] = EM2[Yx].
Conversely, given a M2 ∈ MRIV [P (x, y∣z)], since each

RIV model is also an IV model, we have M1 = M2 ∈MIV [P (x, y∣z)].
Proof of Theorem 2. We will formulate LPs following the
method in Sec. 4.2. let qi,j = P (Xz0 = i,Xz1 = j) and
ei,j,k = E[Yxi ∣Xz0 = j,Xz1 = k] ⋅ qi,j . Since function fY is
bounded in [0,1],

0 ≤ ei,j,k ≤ qj,k. (17)

We could also have:
p0,0 = q0,0 + q0,1, p0,1 = q0,0 + q1,0

p1,0 = q1,0 + q1,1, p1,1 = q0,1 + q1,1
(18)

and
e0,0 = e0,0,0 + e0,0,1, e0,1 = e0,0,0 + e0,1,0

e1,0 = e1,1,0 + e1,1,1, e1,1 = e1,0,1 + e1,1,1.
(19)

The treatment effects E[YX=0],E[YX=1] could be written
as:

E[YX=0] = e0,0,0 + e0,0,1 + e0,1,0 + e0,1,1. (20)
E[YX=1] = e1,0,0 + e1,0,1 + e1,1,0 + e1,1,1. (21)

Optimizing Eq. (20) subject to Eqs. (17) to (19) gives the
bounds E[YX=0] ∈ [l0, h0]. The solution could be derived
by solving the dual problem using vertex enumeration al-
gorithm in (Mattheiss 1973). The causal bound E[YX=1] ∈[l1, h1] is similarly obtained. When Y is binary, [lx, hx]
coincides with the the sharp bound of (Balke and Pearl
1995).

Proofs of Theorems 3-5
Proof of Theorem 3. Given a M1 ∈ MIV[P (x, y,c∣z)], fix
a context c, we construct an IV model M ′

1 such that
PM ′

1
(xZ , yX ) = PM1(xZ , yX ∣c). It trivially holds that

PM ′

1
(x, y∣z) = P (x, y∣c, z) and EM ′

1
[Yx] = EM1[Yx∣c]. By

Thm. 1, we can find a RIV M2 such that PM2(x, y, z) =
PM ′

1
(x, y, z) and EM2[Yx] = EM ′

1
[Yx].

Given a M2 ∈ MRIV[P (x, y∣c, z)], let M denote the un-
derlying CIV generating the observational data P (x, y∣z).
Since in Fig. 3(a), C ⊥⊥ Z, for any z1 ≠ z2, we have
P (c∣z1) = P (c∣z2) = P (c). We will construct a CIV M1

by combining M and M2: (1) PM1(c) = P (c); (2) for con-
text c, values of X,Y are decided by the RIV M2; (3) for
any c′ ≠ c, values of X,Y are decided by the original model
M . It thus trivially holds that PM1(x, y,c∣z) = P (x, y,c∣z)
and EM1[Yx∣c] = EM2[Yx].



Proof of Theorem 4. By Thm. 3, for each c, there exists a
RIV model M1(c) such that for each z, PM1(c)(x, y∣z) =
P (x, y∣c, z) and EM1(c)[Yx] = lx(c). We now construct a
CIV M1 where PM1(c) = P (c); for each c, values of X,Y
are decided by the RIV M1(c). We thus have:

PM1(x, y,c∣z) = PM1(x, y∣c, z)PM1(c)= PMl(c)(x, y∣z)P (c)= P (x, y,c∣z),
and EM1[Yπ(x∣c)] can be written as:

EM1[Yπ(x∣c)] = ∑
x,c

EM1(c)[Yx]π(x∣c)P (c)
= ∑
x,c

lx(c)π(x∣c)P (c) = lπ.
Similarly, we can construct an IV M2 with PM2(x, y,c∣z) =
P (x, y,c∣z),EM2[Yπ(x∣c)] = hπ .

Proof of Theorem 5. We first write E[Yπ(x∣c)] as:

E[Yπ(x∣c)] = ∑
x,c

E[Yx∣c]π(x∣c)P (c)
= ∑
x,c

E[Yx∣c, z]π(x∣c)P (c∣z).
From the fact that Yx ∈ [0,1], we have

E[Yπ(x∣c)] ≥ ∑
x,c

E[Y ∣x,c, z]P (x∣c, z)π(x∣c)P (c∣z)
= ∑
x,c

E[Y ∣x,c, z]π(x∣c)P (x,c∣z) = lπ(z).
Similarly,

E[Yπ(x∣c)] ≤ ∑
x,c

E[Y ∣x,c, z]P (x∣c, z)π(x∣c)P (c∣z)
+∑
x,c

P (X ≠ x∣c, z)π(x∣c)P (c∣z)
= lπ(z) +∑

x,c

(1 − P (x∣c, z))π(x∣c)P (c∣z)
= lπ(z) +∑

x,c

π(x∣c)P (c∣z) −∑
x,c

π(x∣c)P (x,c∣z)
= lπ(z) + 1 −∑

x,c

π(x∣c)P (x,c∣z)
= lπ(z) +∑

x,c

P (x,c∣z) −∑
x,c

π(x∣c)P (x,c∣z)
= lπ(z) +∑

x,c

π(X ≠ x′∣c)P (x,c∣z) = hπ(z).
SinceE[Yπ(x∣c)] is not a function of z, taking the maximum
and minimum over lπ(z) and hπ(z) respectively completes
the proof.

Proofs of Lemmas 1-2
Proof of Lemma 1. Let {Xi, Yi,Ci, Zi}ni=1 denote fi-
nite samples drawn from an observational distribution

P (x, y,c∣z). We define the empirical estimates l̂π, ĥπ of
causal bounds E[Yπ(x∣c)] ∈ [lπ, hπ] as follows:

l̂π = 1

n

n∑
i=1

∑
x

π(x∣Ci)lx(Ci),
ĥπ = 1

n

n∑
i=1

∑
x

π(x∣Ci)hx(Ci).
By basic probabilistic operations,

E[Yπ(x∣c)] = ∑
x,c

E[Yx∣c]π(x∣c)P (c).
Since C and Z are independent in IV models, P (c) =
P (c∣z). The consistency of l̂π and ĥπ immediately fol-
lows.

Proof. For any Z = z, let n(z) = ∑ni Zi = z. The estimators
l̂π(z), ĥπ(z) are defined as follows:

l̂π(z) = 1

n(z)
n∑
i=1

YiIZi=zπ(Xi∣Ci),
ĥπ(z) = l̂π(z) + 1

n(z)
n∑
i=1

IZi=zπ(X ≠Xi∣Ci).
The consistency if the above estimators follows immediately
from Thm. 5.

Proofs of Theorems 6
To prove Thm. 6, we first introduce following lemmas.

Lemma 4. In kl-UCBc, the term∑T−1
t=K P{Ux∗(t) < µx∗} is

bounded by:

T−1∑
t=K P (Ux∗(t) < µx∗) ≤ 3 + 4e log(log(T ))

Proof. Let h∗ = hx∗ and l∗ = lx∗ . Without loss of generality,
assume that l∗ < µx∗ ≤ h∗. Recall that Ux∗(t) = (Ux∗(t) ∧
h∗) ∨ l∗. We thus have:

T−1∑
t=K P (Ux∗(t) < µx∗)
= T−1∑
t=K P ((Ux∗(t) ∧ h∗) ∨ l∗ < µx∗)

≤ T−1∑
t=K P (Ux∗(t) ∧ h∗ < µx∗ , l∗ < µx∗)

≤ T−1∑
t=K P (Ux∗(t) < µx∗) + T−1∑

t=K P (h∗ < µx∗)
Since µx∗ ≤ h∗, P (h∗ < µx∗) = 0. By (Cappé et al. 2013,
Fact A.1), we could further bound ∑T−1

t=K P (Ux∗(t) < µx∗):

T−1∑
t=K P (Ux∗(t) < µx∗) = T−1∑

t=K P (Ux∗(t) < µx∗)
≤ 3 + 4e log(log(T )).



Lemma 5. In kl-UCBc, the term ∑T−1
t=K P (µx∗ ≤

Ux(t),Xt = x) is bounded by:
T−1∑
t=K P (µx∗ ≤ Ux(t),Xt = x)
≤ ⎧⎪⎪⎨⎪⎪⎩

0 if hx < µx∗
log(T )

kl(µx,µx∗) + o(log(T )) otherwise

Proof. We now bound the term by cases:
Case 1. hx < µx∗ . Recall that (Ux(t)∧hx)∨lx. µx∗ ≤ Ux(t)
implies that µx∗ ≤ hx which contradicts the fact hx < µx∗ .
We thus have ∑T−1

t=K′ P (µx∗ ≤ Ux(t),Xt = x) = 0.
Case 2. hx ≥ µx∗ . Since Ux(t) = (Ux(t) ∧ hx) ∨ lx,

T−1∑
t=K P (µx∗ ≤ Ux(t),Xt = x)
≤ T−1∑
t=K P (µx∗ ≤ Ux(t), µx∗ ≤ hx,Xt = x)

+ T−1∑
t=K P (µx∗ ≤ lx).

Since lx ≤ µx < µx∗ for x ≠ x∗, P (µx∗ ≤ lx) = 0. We could
further write ∑T−1

t=K P (µx∗ ≤ Ux(t),Xt = x) as:
T−1∑
t=K P (µx∗ ≤ Ux(t),Xt = x)
≤ T−1∑
t=K P (µx∗ ≤ Ux(t),Xt = x)

= T−1∑
t=K P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x(t), µ) ≤ f(t)

Nx(t) ,Xt = x)
To continue,
T−1
∑
t=K

P (µx∗ ≤ Ux(t),Xt = x)

=
T−K
∑
n=1

τx,n+1

∑
t=τx,n+1

P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤
f(t)
n

,Xt = x)

≤
T−K
∑
n=1

τx,n+1

∑
t=τx,n+1

P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤
f(T )
n

,Xt = x)

=
T−K
∑
n=1

P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤
f(T )
n

)

≤ n0 +
T−K
∑

n=n0+1
P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤

f(T )
n

)

where n0 = ⌈ f(T )
kl(µx,µx∗) ⌉. This implies

(∀n ≥ n0 + 1) kl(µx, µx∗) > f(T )
n

Since kl(⋅, µx∗) is continuous decreasing function on[0, µx∗], there must ∃µ f(T )
n

∈ (µx, µx∗], such that:

kl(µ f(T )
n

, µx∗) ≥ f(T )
n

We next show that:

{∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤ f(T )
n

} ⇒ {µ̂x,n ≥ µ f(T )
n

}
This can be proved by contradiction. Suppose µ̂x,n < µ f(T )

n

,
we then have for ∀µ ∈ [µx∗ ,1]:
kl(µ̂x,n, µ) ≥ kl(µ̂x,n, µx∗) > kl(µ f(T )

n

, µx∗) = f(T )
n

which contradicts {∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤ f(T )
n

}.
Thus, ∀λ > 0, we have:

P (∃µ ∈ [µx∗ ,1] ∶ kl(µ̂x,n, µ) ≤ f(T )
n

)
≤ P (µ̂x,n ≥ µ f(T )

n

)
≤ e−λµ f(T )n E[eλµ̂x,n]

By (Cappé et al. 2013, Fact A.2), we have:
T−1∑
t=K′

P (µx∗ ≤ Ux(t)) ≤ log(T )
kl(µx, µx∗) + o(log(T )).

Lemma 6. In kl-UCBc, the number of draws E[Nx(T )] for
any sub-optimal arm a is upper bounded for any horizon
T ≥ 3 as:

E[Nx(T )] ≤ ⎧⎪⎪⎨⎪⎪⎩
4 + 4e log(log(T )) if hx < µx∗

log(T )
kl(µx,µx∗) + o(log(T )) otherwise

Proof. Following the same decomposition in (Cappé et al.
2013), we have

E[Nx(T )] = 1 + T−1∑
t=K P (Ux∗(t) < µx∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+ T−1∑
t=K P (µx∗ ≤ Ux(t),Xt = x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 2

).

Term 1 and 2 are bounded by Lemma 4 and 5 respectively.
Putting everything together, we prove the statement.

Proof of Theorem 6. The cumulative regret E[RT ] can be
written as

E[RT ] = ∑
x

∆xE[Nx(T )]
= ∑
x∶hx<µx∗

∆xE[Nx(T )] + ∑
x∶hx≥µx∗

∆xE[Nx(T )].
From Lem. 6, we have:

E[RT ] ≤ ∑
x∶hx<µx∗

∆x(4 + 4e log(log(T )))
+ ∑
x∶hx≥µx∗

∆x( log(T )
kl(µx, µx∗) + o(log(T )))

= ∑
x∈X−

hx≥µx∗

( ∆x

kl(µx, µx∗)) log(T ) + o(log(T ))



Proofs of Theorems 7
Proof of Theorem 7. We first prove that lil’LUCBc stops
with the optimal arm x∗ with hight probability. Consider the
event C defined as

{∀x ∈ X , t ∈ {1, . . . , T}, ∣µ̂x,Nx(t) − µx∣ < f(Nx(t), δ)},
where the function f(n, δ) is defined in Eq. 14. If C
holds true, lil’LUCBc must stop with the best arm. From
(Jamieson et al. 2014, Lem. 1), we can show that the stop-
ping condition is met only with the best arm with probability
at least 1 − 2+ε

ε/2 (log(1 + ε))−(1+ε)δ.
We next consider the stopping time of lil’LUCBc if C

holds true. Assume (without loss of generality) that arms
are ordered such that µ1 > µ2 ≥ ⋅ ⋅ ⋅ ≥ µN (so, µ∗ = µ1). We
say arm 1 is BAD if L1(t) ≤ µ1,2 and an arm i ≠ 1 is BAD
if U i(t) ≥ µ1,2. We want to show that given event C, if the
stopping condition is not satisfied, then either xl or xh must
be BAD. We will prove this statement by contradiction.

Suppose both xl and xh are not BAD, and lil’LUCBc does
not stop, i.e., Lxh(t) ≤ Uxl(t),

1. If xh = 1, xl ≠ 1, by definition, Lxh(t) > µ1,2 > Uxl(t).
This means that lil’LUCBc must stop. Contradiction.

2. If xh = x ≠ 1, xl = 1, we have

((µ̂x,Nx(t) + f(Nx(t), δ)) ∧ hx) ∨ lx < µ1,2,

and

((µ̂1,N1(t) − f(N1(t), δ)) ∧ h1) ∨ l1 > µ1,2⇒ ((µ̂1,N1(t) + f(N1(t), δ)) ∧ h1) ∨ l1 > µ1,2

This contradicts that xh = x ≠ 1.
3. If xh = x ≠ 1, xl = x′ ≠ 1, we then have

((µ̂1,N1(t) + f(N1(t), δ)) ∧ h1) ∨ l1 < µ1,2⇒ (µ̂1,N1(t) + f(N1(t), δ)) ∧ h1 < µ1,2⇒ µ̂1,N1(t) + f(N1(t), δ) < µ1,2 or h1 < µ1,2⇔ µ̂1,N1(t) + f(N1(t), δ) < µ1,2

The last follows from h1 ≥ µ1 > µ1,2. We further have:

µ̂1,N1(t) + f(N1(t), δ) < µ1,2⇒ µ̂1,N1(t) + f(N1(t), δ) < µ1,

which contradicts event C.

For arm x with hx < 1,2, Ux(t) < µ1,2 for any t, i.e., arm
i is never BAD.

For arm x with hx ≥ 1,2, define τx be the first integer
such that f(τx, δ) ≤ ∆x/4, and define τ1 = τ2. Assuming
the event C holds, then for any x ≠ 1 and s ≥ τx,

µ̂x,s + f(s, δ) ≤ µx + 2f(s, δ/n)
= µ1,2 + 2f(s, δ) + (µx − µ1) + (µx − µ2)

2≤ µ1,2 + 2f(s, δ) −∆x/2 ≤ µ1,2

This implies that for Nx(t) > τx, arm x is not bad.
Let xl(t), xh(t) denote arms xl, xh at round t. By the

above arguments, we observe that the total number of rounds
does not exceed∞∑
t=1

I{xh(t) is BAD or xl(t) is BAD}
= ∞∑
t=1
∑
x∈X I{{xh(t) = x or xl(t) = x} ∩ {x is BAD}}

= ∞∑
t=1

∑
x∈Xhx≥µ1,2

I{{xh(t) = x or xl(t) = x} ∩ {x is BAD}}
The last step holds since for arm x /∈ X hx≥µ1,2

, i.e., hx <
X hx≥µ1,2

, it is never BAD. We can further write the above
equation as:
∞∑
t=1

∑
x∈Xhx≥µ1,2

I{{xh(t) = x or xl(t) = x} ∩ {x is BAD}}
≤ ∞∑
t=1

∑
x∈Xhx≥µ1,2

I{{xh(t) = x or xl(t) = x} ∩ {Nx(t) ≤ τx}}
≤ ∑
x∈Xhx≥µ1,2

τx

where the last inequality holds by the fact that if {xh(t) =
1 or xl(t) = x}, then Nx(t + 1) = Nx(t) + 1, and this can
oly occur τx times before Nx(t) > τx.

Solving for f(τi, δ) ≤ ∆x/4 gives:

τx ≤ 2γ

∆2
x

log(2 log(γ(1 + ε)∆−2
x )

δ/∣X ∣ ).
where γ = 8(1 + √

ε)2(1 + ε). Recalling that each
round we sample two times, we observe that with
probability at least 1 − 2+ε

ε/2 (log(1 + ε))−(1+ε)δ, the
algorithm obtains a sample complexity of orderO(∑x∈X−

hx≥µ1,2

∆−2
x log(δ−1∣X ∣ log(∆−2

x ))).

Proofs of Theorem 8 and Lemma 3
To prove Thm. 8, we need to introduce following lemmas.

Lemma 7. In D-UCBc, the term P (Uπ∗(t) < µπ∗) at time
t is bounded by

P (Uπ∗(t) < µπ∗) ≤ t−2.

Proof. Recall that Uπ∗(t) = (Uπ∗(t) ∧ hπ∗) ∨ lπ∗ . Without
loss of generality, assume µπ∗ ∈ (lπ∗ , hπ∗]. We have

P (Uπ∗(t) < µπ∗) = P ((Uπ∗(t) ∧ hπ∗) ∨ lπ∗ < µπ∗)≤ P ((Uπ∗(t) ∧ hπ∗) < µπ∗ , lπ∗ < µπ∗)= P (Uπ∗(t) ∧ hπ∗ < µπ∗)≤ P (Uπ∗(t) < µπ∗) + P (hπ∗ < µπ∗)= P (Uπ∗(t) < µπ∗).
The last step follows from the fact hπ∗ ≥ µπ∗ . By (Sen,
Shanmugam, and Shakkottai 2018, Lem. 3), we have

P (Uπ∗(t) < µπ∗) ≤ P (Uπ∗(t) < µπ∗) < t−2.



Lemma 8. In D-UCBc, the term P (Uπ(t) ≥ µπ∗) ≤ t−2 at
time

{∀t > 1 if hπ < µπ∗
t > CM2γ(∆π) log(T ) otherwise

where C = 144 and γ(∆π) = log2(6/∆π)
∆2
π

.

Proof. If hπ < µπ∗ , since Uπ(t) = (Uπ(t) ∧ hπ) ∨ lπ , we
must have P (Uπ(t) ≥ µπ∗) = 0.

As for hπ ≥ µπ∗ , we have

P (Uπ(t) ≥ µπ∗) ≤ P (Uπ(t) ∧ hπ ≥ µπ∗) + P (lπ ≥ µπ∗)
Since lπ ≤ µπ < µπ∗ , P (lπ ≥ µπ∗) = 0. The above equation
can thus be further written as:

P (Uπ(t) ≥ µπ∗) ≤ P (Uπ(t) ∧ hπ ≥ µπ∗) ≤ P (Uπ(t) ≥ µπ∗)
Let t > CM2γ(∆π) log(T ), by (Sen, Shanmugam, and
Shakkottai 2018, Lem. 4), we have

P (Uπ(t) ≥ µπ∗) ≤ P (Uπ(t) ≥ µπ∗) ≤ t−2.

Lemma 9. In D-UCBc algorithm, let πt denote the policy
selected at time t > 1. For π ≠ π∗, the term P (πt = π) ≤ 2t−2

at time

{∀t > 1 if hπ < µπ∗
t > CM2γ(∆π) log(T ) otherwise

where C = 144 and γ(∆π) = log2(6/∆π)
∆2
π

.

Proof. We can decompose P (πt = π) as:

P (πt = π) = P (Uπ∗(t) < µπ∗ , πt = π)+ P (Uπ∗(t) ≥ µπ∗ , πt = π)≤ P (Uπ∗(t) < µπ∗) + P (Uπ(t) ≥ µπ∗)
The rest proof follows from Lems. 7-8.

Proof of Theorem 9. Recall that policies in Π′ ⊆ Π are or-
dered such that µπ1 ≥ µπ2 ≥ ⋯ ≥ µπ

∣Π′
∣
. Let d(i) denote

the index of a policy πi ∈ Π−
hπ≥µπ∗ in set Π. For a policy

πk ∈Π−, let

Tk = ⌈CM2γ(∆π) log(T )⌉.
Let N = ∣Π−

hπ≥µπ∗ ∣. The regret of D-UCBc can be bounded
as:

E[RΠ
T ] ≤ Td(N)−1∑

t=1

∆πtP (πt ≠ π∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term1

+ T∑
t=Td(1)

∆πtP (πt ≠ π∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term2

+ N−1∑
k=0

Td(N−k−1)−1∑
t=Td(N−k)

∆πtP (πt ≠ π∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term3

Term 1 can be bounded as:
Td(N)−1∑
t=1

∆πtP (πt ≠ π∗) ≤ Td(N)−1∑
t=1

∆πtP (πt ∈ {π2, . . . , πd(N)})
+ Td(N)−1∑

t=1

∣X ∣∑
i=d(N)+1

∆πiP (πt = πi)
≤ ∆πd(N)Td(N) + Td(N)−1∑

t=1
∑

πi∈Π−

2∆πi

t2
.

Term 2 can be bounded as:
T∑

t=Td(1)
∆πtP (πt ≠ π∗) = T∑

t=Td(1)
∣X ∣∑
i=2

∆πiP (πt = πi)
≤ T∑
t=Td(1) ∑πi∈Π−

2∆πi

t2
.

The last follows from Lem. 9. Term 3 can be bounded as:
N−2∑
k=0

Td(N−k−1)−1∑
t=Td(N−k)

∆πtP (πt ≠ π∗)
≤ N−2∑
k=0

Td(N−k−1)−1∑
t=Td(N−k)

(∆πd(N−k−1)
P (πt ∈ {πi}i≤d(N−k−1))

+ N∑
i=d(N−k−1)+1

∆πiP (πt = πi))
≤ N−2∑
k=0

(∆πd(N−k−1)
(Td(N−k−1) − Td(N−k))

+ Td(N−k−1)−1∑
t=Td(N−k)

∑
πi∈Π−

2∆πi

t2
)

Together, we can bound E[RΠ
T ] as

E[RΠ
T ] ≤ ∆πd(N)Td(N)

+ T∑
t=1
∑
π∈Π−

2∆π

t2

+ N−2∑
k=0

∆πd(N−k−1)
(Td(N−k−1) − Td(N−k)).

Since Tk ∈ [CM2γ(∆π) log(T ),CM2γ(∆π) log(T )+1),

E[RΠ
T ]

≤ CM2∆πd(N)γ(∆π) log(T ) +
T

∑
t=1
∑
π∈Π−

2∆π

t2
+
N

∑
i=1

∆πd(i)

+CM2 log(T )
N−2
∑
k=0

∆πd(N−k−1)
(γ(∆πd(N−k−1)

) − γ(∆πd(N−k)
))

≤ CM2 log(T )∆−1d(N) + (π2/3) ∑
πi∈Π−

∆πi +
N

∑
i=1

∆πd(i)

+CM2 log(T )
N−2
∑
k=0

∆πd(N−k−1)
(γ(∆πd(N−k−1)

) − γ(∆πd(N−k)
)).

which gives

E[RΠ
T ] ≤ Cλ(Π−

hx≥µπ∗ )M2 log(T ) + o(log(T )).



Proof of Lemma 3. For Π1 ⊂ Π2, let d(i) denote the index
of a policy πi ∈ Π1 in set Π2. Let N = ∣Π1∣, λ(Π1) can be
written as:

λ(Π1)
= ∆πd(N)γ(∆πd(N)) + N−1∑

i=1

∆πd(i)(γ(∆πi) − γ(∆πi+1))
= ∆πd(N)γ(∆π∣Π2 ∣

) + ∣Π2∣−1∑
j=d(N)∆πd(N)(γ(∆πj) − γ(∆πj+1))

+ N−1∑
i=1

d(i+1)−1∑
j=d(i) ∆πd(i)(γ(∆πj) − γ(∆πj+1))

≤ ∆π∣Π2 ∣
γ(∆π∣Π2 ∣

) + ∣Π2∣−1∑
j=d(N)∆πj(γ(∆πj) − γ(∆πj+1))

+ N−1∑
i=1

d(i+1)−1∑
j=d(i) ∆πj(γ(∆πj) − γ(∆πj+1))

+ d(1)∑
j=1

∆πj(γ(∆πj) − γ(∆πj+1))
≤ ∆π∣Π2 ∣

γ(∆π∣Π2 ∣
) + ∣Π2∣−1∑

j=1

∆πj(γ(∆πj) − γ(∆πj+1))
≤ λ(Π2)

The above inequality strictly holds if there exists a policy
πi ∈Π2/Π1 such that ∆πi < ∆πi+1 .

Appendix III. Experimental Setup
In this section, we describe the International Stroke Trial
dataset and details of the experimental setup. Our evaluation
framework contains two main components: (1) a censoring
procedure creating confounded observational data from per-
fectly randomized clinical trial records; (2) a simulator mod-
eling the bandit process using logged clinical trial data. We
will describe the general procedures of these components,
followed by the details of each experiment (if not included
in the main text). Finally, we provide further experiment re-
sults for a more involved contextual bandit task.

International Stroke Trials

International Stroke Trial (IST) is a randomized clinical trial
assessing the treatment effect of aspirin, subcutaneous hep-
arin, both, or neither among 19,435 patients with acute is-
chemic stroke (Carolei et al. 1997). Previous studies found
that a significant reduction in death or non-fatal recurrent
stroke with aspirin. During the trial, a set of pre-treatment at-
tributes U of the patients are collected, including the gender
S (0 for male, 1 for female), conscious stateC at randomiza-
tion (0 for unconscious, 1 for drowsy and 2 for awake) and
age A (0 if younger than 73 years old, 1 otherwise). We esti-
mate from data the joint distribution P (s, c, a). summarized
in Table 2.

S = 0 S = 1
A = 0 A = 1 A = 0 A = 1

C = 0 0.002 0.004 0.003 0.006
C = 1 0.051 0.051 0.036 0.08
C = 2 0.267 0.165 0.146 0.19

Table 2: The probability table for the distribution P (s, c, a)
where S, C,A stands for the gender, conscious state and age
of the patient.

We focus on the treatment effect of the aspirin allocation
X (1 for yes, 0 for no). One of the main contribution of this
paper is the relaxation of the key assumption in (Zhang and
Bareinboim 2017) that the derivation of causal bounds re-
quires the outcome variable Y to be finite. Unfortunately,
the primary clinical outcomes of IST (e.g., death, recurrent
stroke, recovery) are all categorical variables. To illustrate
the efficiency of our approach, we thus consider the treat-
ment effect of aspirin on an artificial score Y that is a con-
tinuous variable in [0,1]. Specifically, the value of the com-
posite score Y is decided by the logistic function defined as:

y = 1

1 + e−g(x,s,c,a) , (22)

where the function g(x, s, c, a) is equal to

x + s + 0.2(c − 1) − 2xa(1 − s) + uy. (23)

Uy is an independent gaussian noise with 0 mean and vari-
ance unity. In the above equation, the coefficients represent
the direction of the causal effects of the associated variable
on the score Y . Specifically, we penalize the unconscious
state and the aspirin usage on male patients who are older
than 73 years while recognizing the benefits of aspirin al-
location on the general population. Throughout our exper-
iments, the form of the score function is never revealed.
The agents could only infer about statistical features of Y
through finite samples of the environment.

Creating Confounding Bias
In this section, we discuss methods to create a confounded
dataset from IST data since it’s the very goal of the random-
ization procedure to remove the confounding bias.

Given the IST dataset D = {Xi,Ui, Yi}Ni=1 where the
treatment allocation X is fully randomized, independent
of the context U , our goal is to obtain a dataset Dc ={Xi,Ui, Yi}Nci=1 where X and U are associated. To create
this association, we censor theD following an inclusion rule
fz(x∣u), similar to the procedure used in (Kallus and Zhou
2018).

The censoring procedure goes as follows. For each sample
Xi, Ui, Yi, we draw an independent variable X̃i following
the selection rule fz(x∣u) given Ui, i.e., X̃i ∼ fz(X ∣Ui).
We then compare the values of Xi and X̃i. If Xi = X̃i, we
include the sample Xi, Ui, Yi in Dc. Otherwise, the sample
Xi,Ui, Yi is dropped.

We describe in Fig. 5(a-b) the graphical representation
of this censoring procedure. Given the perfectly random-
ized data D of Fig. 6(a), we censor D using the inclusion
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Figure 5: Causal diagrams the censoring procedure. D is a
perfectly randomized data and in Dc, variables X and U
are associated through the selection bias introduced by the
inclusion rule fz(x∣u).

Rules S = 0 S = 1
A = 0 A = 1 A = 0 A = 1

fz1

C = 0 1 0 1 0
C = 1 0 1 1 0
C = 2 0 0.2 0 1

fz2

C = 0 1 0 1 0
C = 1 1 1 1 0
C = 2 1 1 0 1

fz3

C = 0 0 1 0 0.1
C = 1 0 0.3 0 0
C = 2 0 0.0 0 0

fz1

C = 1 1 0 1 0
C = 1 0 1 1 0
C = 2 0 0.2 0 1

Table 3: The inclusion rules {fzi(x∣u)}i=1,...,4.

fz(x∣u). This censoring procedure introduces the selection
bias to the resulting data Dc, creating association between
X and U . Since the treatment X in D is fully random-
ized, it is verifiable that the conditional distribution P (x∣u)
computed from Dc coincides with the selection rule, i.e.,
P (x∣u) = fz(x∣u).

Note that the composite score Y is affected by the context
U (Eq. 22). We thus obtain a dataset Dc = {Xi, Ui, Yi}Nci=1
where the treatment X and outcome Y are both associated
with the covariate U . Since our methods only assume that
U is non-descendant of the treatment X , it suffices to use
the created datasetDc as the confounded observational data.
To emulate the unobserved confounding, one could simply
drop the column of U .

Following the procedure described above, we generate
confounded observational samples using 4 different includes
rules {fzi(x∣u)}i=1,...,4, which are defined in Table 3.

The Simulation Framework
We evaluate the performance of each algorithm with a sim-
ulation framework modeling the bandit process from the
logged clinical trial data (Li et al. 2010; Kuleshov and Pre-
cup 2014). For each bandit algorithm, 100 simulations were
performed. For the regret minimization task (in both MABs
and contextual bandits), each simulation lasts for 5000 trials.
In the best-arm identification task, the simulation continues
until the bandit procedure stopped with the optimal treat-
ment. All the results presented in the paper form an average
over these 100 simulations.

Each simulation proceeds as follows. At each trial t, a pa-
tient Ut is randomly selected with replacement from 19,435
logged trial data. The bandit strategy then picks a treatment
Xt for the patient, possibly depending on the context Ut.
A reward Yt is then decided following the score function
Eq. 22. Note that we make bootstrap estimates of the pre-
treatment attributes U , which allows us to preserve the nat-
ural relations among variables.

Details about Contextual Bandits
In contextual bandit settings, we aim to minimize the cu-
mulative regret over two candidate policies Π = {π0, π1}.
Table 5 provides the details about these candidate policies.

S = 0 S = 1 E[Yπ] [lπ, hπ]
π0 0.05 0.1 0.6277 [0.5436,0.6747]
π1 0.97 0.99 ∗0.6950 [0.3663,0.8441]

Table 5: Parameterizations of the candidate policies Π for
the contextual bandit task report in Fig. 4(c).

Columns S = 0 and S = 1 correspond to, respectively,
the probabilities πi(X = 1∣S = 0) and πi(X = 1∣S = 1).
Column E[Yπ] reports the expected reward of each pol-
icy, where the optimal policy π1 with the largest reward
is marked with ∗. Column [l̂π, ĥπ] represents the causal
bounds of each policy. Each empirical bound is computed
using all ∣Z ∣ = 4 sets of confounded observational samples.

We note that in this experiment, for the sub-optimal pol-
icy π0 ≠ π1, its causal bound ĥπ0 < µπ1 , satisfying the im-
provement condition of Thm. 13. This explains the domi-
nating performance of D-UCBc reported in the paper. To
illustrate the efficiency of our approach, we also include a
more involve contextual bandit learning scenario where the
improvement condition ĥπ < µπ∗ is not always satisfied.

A More Involved Contextual Bandits Experiment
Suppose now that the conscious state C of each patient is
also observed. We consider the regret minimization in con-
textual bandits over a set of candidate policies Π = {πi}6

i=1.
Table 4 provides the detailed descriptions of these candi-
date policies. Row S = i,C = j shows the probabilities
π(X = 1∣S = i,C = j) for each π ∈ Π. Row E[Yπ] and[lπ, hπ] represent, respectively, the expected reward and the
causal bounds of each policy π. The optimal policy π4 is
marked with ∗. Row hπ < µπ∗ indicates the improvement
condition of Thm. 13 (marked ✓ if satisfied).

Similarly, we apply strategies D-UCBc, D-UCBc−, D-
UCB and D-UCB− to this contextual bandit instance. Their
cumulative regrets (CR) are measured, shown in Fig. 6. We
also measure the average regret, which is the ratio between
cumulative regret and the number of trials. The analysis re-
veals a significant difference in CR experienced by D-UCBc
(CR = 44.4) compared to D-UCB (CR = 230.52) and D-
UCBc− (CR = 187.06). D-UCB− (CR = 318.21) performs
worst among all due to the confounding bias. This experi-
ment corroborate with our findings in the paper, showing the



Figure 6: Simulations results comparing solvers that are causally enhanced contextual bandit algorithms (D-UCBC) and stan-
dard (D-UCB), warm-started from observations (D-UCB−) and D-UCBC with the causal bounds estimated with n = 200
observational samples (D-UCBC−).

π1 π2 π3 π4 π5 π6

S = 0
C = 0 0.99 0.99 0.01 0.01 0.01 0.99
C = 1 0.01 0.99 0.99 0.01 0.01 0.99
C = 2 0.01 0.01 0.01 0.01 0.01 0.99

S = 1
C = 0 0.99 0.01 0.01 0.01 0.01 0.01
C = 1 0.01 0.01 0.99 0.99 0.01 0.01
C = 2 0.01 0.01 0.01 0.99 0.01 0.99

E[Yπ] 0.621 0.619 0.638 ∗0.691 0.621 0.678[lπ, hπ] [0.579,0.655] [0.547,0.684] [0.467,0.719] [0.262,0.775] [0.584,0.654] [0.07,0.966]
hπ < µπ∗ ✓ ✓ ✓

Table 4: Details of the candidate policies for the more involved contextual bandit task.

efficiency of the proposed causal approach in more compli-
cated contextual bandit settings.


