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Abstract

A dynamic treatment regime (DTR) consists of a
sequence of decision rules, one per stage of inter-
vention, that dictates how to determine the treat-
ment assignment to patients based on evolving
treatments and covariates’ history. These regimes
are particularly effective for managing chronic
disorders and is arguably one of the critical in-
gredients underlying more personalized decision-
making systems. All reinforcement learning algo-
rithms for finding the optimal DTR in online set-
tings will suffer Ω(

√
|DX∪S |T ) regret on some

environments, where T is the number of exper-
iments and DX∪S is the domains of the treat-
ments X and covariates S. This implies that
T = Ω(|DX∪S |) trials will be required to gen-
erate an optimal DTR. In many applications, the
domains ofX and S could be enormous, which
means that the time required to ensure appropri-
ate learning may be unattainable. We show that,
if the causal diagram of the underlying environ-
ment is provided, one could achieve regret that
is exponentially smaller than DX∪S . In particu-
lar, we develop two online algorithms that satisfy
such regret bounds by exploiting the causal struc-
ture underlying the DTR; one is the based on the
principle of optimism in the face of uncertainty
(OFU-DTR), and the other uses the posterior sam-
pling learning (PS-DTR). Finally, we introduce
efficient methods to accelerate these online learn-
ing procedures by leveraging the abundant, yet
biased observational (non-experimental) data.
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1. Introduction
In medical practice, a patient typically has to be treated at
multiple stages; a physician sequentially assigns each treat-
ment, repeatedly tailored to the patient’s time-varying, dy-
namic state (e.g., infection’s level, different diagnostic tests).
Dynamic treatment regimes (DTRs, Murphy 2003) provide
an attractive framework of personalized treatments in longi-
tudinal settings. Operationally, a DTR consists of decision
rules that dictate what treatment to provide at each stage,
given the patient’s evolving conditions and treatments’ his-
tory. These decision rules are alternatively known as adap-
tive treatment strategies (Lavori & Dawson, 2000; 2008;
Murphy, 2005a; Thall et al., 2000; 2002) or treatment poli-
cies (Lunceford et al., 2002; Wahed & Tsiatis, 2004; 2006).

Learning the optimal dynamic treatment regime concerns
with finding a sequence of decision rules σX over a finite
set of treatments X that maximizes a primary outcome
Y . The main challenge is that since the underlying system
dynamics are often unknown, it’s not immediate how to
infer the consequences of executing the policy do(σX), i.e.,
the causal effect EσX

[Y ]. Most of the current work in the
causal inference literature focus on the off-policy (offline)
learning setting, where one tries to identify the causal effect
from the combination of static data and qualitative assump-
tions about the data-generating mechanisms. Several criteria
and algorithms have been developed (Pearl, 2000; Spirtes
et al., 2001; Bareinboim & Pearl, 2016). For instance, a
criterion called the sequential backdoor (Pearl & Robins,
1995) allows one to determine whether causal effects can be
obtained by adjustment. This condition is also referred to
as sequential ignorability (Rubin, 1978; Murphy, 2003). To
ensure it, one could randomly assign values of treatments at
each stage of the intervention and observe the subsequent
outcomes; a popular strategy of this kind is known as the
sequential multiple assignment randomized trail (SMART,
Murphy 2005a). Whenever the backdoor condition can
be ascertained, a number of efficient off-policy estimation
procedures exist, including popular methods based on the
propensity score (Rosenbaum & Rubin, 1983), inverse prob-
ability of treatment weighting (Murphy et al., 2001; Robins
et al., 2008), and Q-learning (Murphy, 2005b).

More recently, (Zhang & Bareinboim, 2019) introduced
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the first online reinforcement learning (RL, Sutton & Barto
1998) algorithm for finding the optimal DTR. Compared
with the off-policy learning, an online learning algorithm
learns through sequential, adaptive experimentation. It re-
peatedly adjusts the current decision rules based on the past
outcomes; the updated decision rules are deployed to gen-
erate new observations. The goal is to identify the optimal
treatment regime with low regret, i.e., the least amount of
experimentation. Settings that allow some amount of on-
line experimentation are increasingly popular, including,
for instance, mobile and internet applications where contin-
uous monitoring and just-in-time intervention are largely
available (Chakraborty & Moodie, 2013)). For DTRs with
treatmentsX and covariates’ history S, the strongest results
of this kind establish Õ(

√
|DX∪S |T )1 for a particular algo-

rithm introduced in (Zhang & Bareinboim, 2019), which is
close to the lower bound Ω(

√
|DX∪S |T ). However, when

the cardinality of DX∪S is huge, even this level of regret
(to guarantee appropriate learning) is somewhat unattain-
able in some critical settings, which suggests the need for
investigating alternative and reasonable assumptions.

In many applications, one often has access to some causal
knowledge about the underlying environment, represented
in the form of directed acyclic causal diagrams (Pearl,
2000). When the causal diagram is sparse, e.g., some vari-
ables in S are affected by a small subset of treatments X ,
the dimensionality of the learning problem could be reduced
exponentially. There are RL algorithms exploiting the struc-
tural information in Markov decision processes (MDPs),
where a finite state is statistically sufficient to summarize
the treatments and covariates’ history (Kearns & Koller,
1999; Osband & Van Roy, 2014). Unfortunately, the under-
lying environment of DTRs is often non-Markovian, and
involves non-trivial causal relationships. For instance, in a
treatment regime where patients receive multiple courses
of chemotherapy, the initial treatment could affect the final
remission via some unknown mechanisms, which are not
summarizable by a prespecified state (Wang et al., 2012).

In this paper, we study the online learning of optimal dy-
namic treatment regimes provided with the causal diagram
of the underlying, unknown environment. More specifically,
our contributions are as follows. (1) We propose an efficient
procedure (Alg. 1) reducing the dimensionality of candidate
policy space by exploiting the functional and independence
restrictions encoded in the causal diagram. (2) We deve-
lope two novel online reinforcement learning algorithms
(Algs. 2 and 3) for identifying the optimal DTR, leverag-
ing the causal diagram, and that consistently dominate the
state-of-art methods in terms of the performance. (3) We
introduce systematic methods to accelerate the proposed
algorithms by extrapolating knowledge from the abundant,

1f = Õ(g) if and only if ∃k such that f = O(g logk(g)).

yet biased observational (non-experimental) data (Thms. 6
and 7). Our results are validated on multi-stage treatments
regimes for lung cancer and dyspnoea. Given the space con-
straints, all proofs are provided in (Zhang & Bareinboim,
2020, Appendices A-C).

1.1. Preliminaries

In this section, we introduce the basic notations and defi-
nitions used throughout the paper. We use capital letters
to denote variables (X) and small letters for their values
(x). Let DX represent the domain of X and |DX | its dimen-
sion. We consistently use the abbreviation P (x) to represent
the probabilities P (X = x). X(i) stands for a sequence
{X1, . . . , Xi} (∅ if i < 1). Finally, I{Z=z} is an indicator
function that returns 1 if Z = z holds true; otherwise 0.

The basic semantical framework of our analysis rest on struc-
tural causal models (SCMs) (Pearl, 2000, Ch. 7). A SCM
M is a tuple 〈U ,V ,F , P (u)〉 where V is a set of endoge-
nous (often observed) variables and U is a set of exogenous
(unobserved) variables. F is a set of structural functions
where fV ∈ F decides values of an endogenous variable
V ∈ V taking as argument a combination of other variables.
That is, V ← fV (PaV , UV ),PaV ⊆ V , UV ⊆ U . Values
of U are drawn from a distribution P (u), which induces
an observational distribution P (v) over V . An intervention
on a subset X ⊆ V , denoted by do(x), is an operation
where values of X are set to constants x, regardless of
how they were ordinarily determined through the functions
{fX : ∀X ∈X}. For a SCM M , let Mx be a submodel of
M induced by do(x). The interventional distribution Px(s)
is the distribution over S ⊆ V in submodel Mx.

Each SCM M is associated with a directed acyclic graph
(DAG) G (e.g., see Fig. 1a), called the causal diagram, where
nodes correspond to endogenous variables V , solid arrows
represent arguments of each function fV . A bi-directed
arrow between nodes Vi and Vj indicates an unobserved
confounder (UC) affecting both Vi and Vj , i.e., UVi ∩UVj 6=
∅. We will use the graph-theoretic family abbreviations, e.g.
An(X)G ,De(X)G ,Pa(X)G stand for the set of ancestors,
descendants and parents ofX in G (includingX). We omit
the subscript G when it is obvious. A path from a node X to
a node Y in G is a sequence of edges which does not include
a particular node more than once. Two sets of nodesX,Y
are said to be d-separated by a third set Z in a DAG G,
denoted by (X ⊥⊥ Y |Z)G , if every edge path from nodes
in one set to nodes in another are “blocked”. The criterion
of blockage follows (Pearl, 2000, Def. 1.2.3).

In a causal diagram G, variables V could be partitioned
into disjoint groups, called confounded components (c-
component), by assigning two variables to the same group
if and only if they are connected by a path composed solely
of bi-directed arrows (Tian & Pearl, 2002). The latent pro-
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jection Proj(G,S) is an algorithm that induces a causal
diagram from G over a subset S ⊆ V while preserving
topological relationships among S (Tian, 2002, Def. 5). For
example, in Fig. 1a, Proj(G, {X2, Y }) returns a subgraph
X2 → Y ; X1, S1, X2 belong to the same c-component due
to the bi-directed path X1 ↔ S1 ↔ X2.

2. Optimal Dynamic Treatment Regimes
We start the section by formalizing DTRs in the semantics
of SCMs. We consider the sequential decision-making prob-
lem in a SCM M∗ = 〈U ,V ,F , P (u)〉, where an agent
(e.g., a physician) determines the values of a set of treat-
ments X ⊆ V with the goal of maximizing a primary
outcome Y ∈ V . Domains of V are discrete and finite.

A dynamic treatment regime (hereafter, policy) σX is a
sequence of decision rules {σX : ∀X ∈X}. Each σX is a
mapping from the values of the treatments and covariates’
history HX ⊆ V to the domain of probability distributions
over X , denoted by σX(x|hX); we write HX+ = HX ∪
X . An intervention do(σX) following a policy σX is an
operation that determines values of each X ∈X following
the decision rule σX , regardless of its original function
fX . Let M∗σX

be the manipulated SCM of M∗ induced by
do(σX). We define the interventional distribution PσX

(v)
as the distribution over V in the manipulated model M∗σX

,

PσX
(v) =

∑
u

P (u)
∏
V 6∈X

P (v|paV ,uV )
∏
X∈X

σX(x|hX).

The collection of all possible σX defines a policy space Π,
which we denote by {DHX 7→ DX : ∀X ∈X}. We are in
search of an optimal policy σ∗X maximizing the expected
outcome EσX

[Y ], i.e., σ∗X = arg maxσX∈ΠEσX
[Y ].

Let G denote the causal diagram associated with M∗ and
let GX be a subgraph of G by removing incoming arrows
toX . We denote by GσX

a manipulated diagram obtained
from G and Π by adding arrows from nodes in HX to X
in the subgraph GX . For example, Fig. 1b shows a manip-
ulated graph GσX

where treatments are highlighted in red
and input arrows in blue. We assume that GσX

does not
include cycles. A DTR agent decides treatments following
a topological ordering ≺ in GσX

. It does not forget pre-
vious treatments or information it once had, i.e., for any
Xi ≺ Xj , HX+

i
⊆ HXj . Such a property, called perfect

recall (Koller & Friedman, 2009, Def. 23.5), ensures the
following independence relationships among decision rules.
Definition 1 (Solubility). A policy space Π is soluble w.r.t.
G and Y if there exists a topological ordering ≺ on GσX

(called the soluble ordering) such that whenever Xi ≺ Xj ,
(Y ∩De(Xj) ⊥⊥ σXi |HX+

j
)GσX , where σXi is a new parent

node added to Xi.

For instance, the policy space Π described in Fig. 1b is

X1

S1

X2

Y

(a) G

X1

S1

X2

Y

σX1

σX2

(b) GσX1,X2

X1

S1

X2

Y

(c) Gσ̃X1,X2

X1

S1

X2

Y

(d) GσX2

Figure 1: (a) A causal diagram G; (b) a manipulated diagram
GσX

with a policy space Π = {D∅ 7→ DX1 ,D{S1,X1} 7→
DX2
}; (c) a diagram Gσ̃X1,X2

with a reduction Π̃ = {D∅ 7→
DX1

,DX1
7→ DX2

}; (c) a manipulated diagram GσX2
with

the minimal reduction ΠMIN = {D∅ 7→ DX2
}.

soluble relative to X1 ≺ S2 ≺ X2 ≺ Y since (Y ⊥⊥
σX1
|{X1, S2, X2})GσX1,X2

. When Π is soluble and M∗ is
known, there exist efficient dynamic programming planners
(Lauritzen & Nilsson, 2001) that solve for the optimal policy
σ∗X . Throughout this paper, we assume the parameters of
M∗ are unknown. Only the causal diagram G, the policy
space Π, and the primary outcome Y are provided to the
learner, which we summarize as a signature JG,Π, Y K.

2.1. Reducing the Policy Space

In this section, we simplify the complexity of the learning
problem by determining and exploiting irrelevant treatments
and information for the candidate policies. We begin by
defining the equivalence relationships among policy spaces.

Definition 2. Given JG,Π, Y K, a policy space Π̃ is
equivalent to Π, if for any SCM M conforming to G,
maxσ̃X∈Π̃EMσ̃X

[Y ] = maxσX∈ΠEMσX
[Y ].

In words, two policy spaces are equivalent if they induce the
same optimal performance. It is thus sufficient to optimize
over a policy space that is in the same equivalence class of
Π. We will introduce graphical conditions that identify such
an equivalence class. Among equivalent policy spaces, we
consistently prefer ones with smaller cardinality |Π|.
Definition 3. Given JG,Π, Y K, treatments X̃ ⊆ X are
irrelevant if X̃ = X \ (X ∩An(Y ))GσX .

Intuitively, treatments X̃ are irrelevant if they has no causal
(functional) effect on the primary outcome Y . Therefore,
the agent could choose not to intervene on X̃ without com-
promising its optimal performance. Let Π \ X̃ denote a
partial policy space obtained from Π by removing treat-
ments X̃ , i.e., {DHX 7→ DX : ∀X 6∈ X}. The following
proposition confirms the intuition of irrelevant treatments.

Lemma 1. Given JG,Π, Y K, Π \ X̃ is equivalent to Π if
treatments X̃ are irrelevant.

We will also utilize the notion of irrelevant evidences intro-
duced in (Lauritzen & Nilsson, 2001, Def. 8).
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Definition 4. Given JG,Π, Y K, evidences S̃ ⊆ HX for
X ∈ X , denoted by S̃ 7→ X , are irrelevant if (Y ∩
De(X) ⊥⊥ S̃|HX+ \ S̃)GσX .

Def. 4 states that evidences S̃ 7→ X have no value of in-
formation on the outcome Y if the remaining evidences
are known. Let Π \ {S̃ 7→ X} denote a policy space ob-
tained from Π by removing S̃ from input space of σX , i.e,
{DHX\S̃ 7→ DX}∪(Π\{X}). Our next result corroborates
the definition of irrelevant evidence.

Lemma 2. Given JG,Π, Y K, Π \ {S̃ 7→ X} is equivalent
to Π if evidences S̃ 7→ X are irrelevant.

Lems. 1 and 2 allow us to search through the equivalence
class of Π with reduced cardinality.

Definition 5. Given JG,Π, Y K, a policy space Π̃ is a reduc-
tion of Π if it is obtainable from Π by successively removing
irrelevant evidences or treatments.

Lemma 3. Given JG,Π, Y K, a reduction Π̃ of the policy
space Π is soluble if Π is soluble.

Lem. 3 shows that Π̃ satisfies some basic causal constraints
of Π, i.e., the solubility is preserved under reduction. In gen-
eral, computational and sample complexities of the learning
problem depend on cardinalities of candidate policies. Nat-
urally, we want to solve for the optimal policy in a function
space that is reduced as much as possible.

Definition 6. Given JG,Π, Y K, a reduction ΠMIN of Π is
minimal if it has no irrelevant evidence and treatment.

One simple algorithm for obtaining a minimal reduction
ΠMIN is to remove irrelevant treatments and evidences itera-
tively from Π until no more reduction could be found. An
obvious question is whether the ordering of removal affects
the final output, i.e., there exist multiple minimal reductions.
Fortunately, the following theorem implies the opposite.

Theorem 1. Given JG,Π, Y K, there exists a unique minimal
reduction ΠMIN of the policy space Π.

We describe in Alg. 1 the Reduce algorithm that efficiently
finds the minimal reduction. More specifically, let ≺ be a
soluble ordering in GσX

. Reduce examines the treatments
in X following a reverse ordering regarding ≺. For each
treatment Xi, it iteratively reduce the policy space by re-
moving irrelevant evidences. Finally, it obtains the minimal
reduction by removing all irrelevant treatments.

Theorem 2. Given JG,Π, Y K, Reduce returns the minimal
reduction ΠMIN of a soluble policy space Π.

As an example, we apply Reduce on the policy space Π
described in Fig. 1b. Since (Y ⊥⊥ S1|X1, X2)GσX1,X2

,
evidence S1 7→ X2 is irrelevant. Removing S1 leads to a re-
duction Π̃ = Π\{S1 7→ X2} described in Fig. 1c. Similarly,

Algorithm 1 Reduce
1: Input: Signature JG,Π, Y K.
2: Let ≺ be a soluble ordering in GσX

and let treatments
inX be ordered by X1 ≺ · · · ≺ Xn.

3: for all i = n, . . . , 1 do
4: for all irrelevant evidence S 7→ Xi in Π do
5: Let Π = Π \ {S 7→ Xi}.
6: end for
7: end for
8: Return Π = Π \ X̃ where X̃ are irrelevant treatments.

we could remove X1 7→ X2 since (Y ⊥⊥ X1|X2)Gσ̃X1,X2
.

Treatment X1 is now irrelevant since there exists no path
from X1 to Y . Removing X1 gives the minimal reduction
ΠMIN described in Fig. 1d. Suppose policies in Π are de-
terministic. The cardinality of Π is |DX1

||D{X1,X2,S2}|;
while |ΠMIN| could be much smaller, equating to |DX2

|.

3. Online Learning Algorithms
The goal of this section is to design online RL algorithms
that find the optimal DTR σ∗X in an unknown SCM M∗

based solely on the information summarized in JG,Π, Y K.

An online learning algorithm learns the underlying system
dynamics of M∗ through repeated episodes of interactions
t = 1, . . . , T . At each episode t, the agent picks a pol-
icy σtX , assigns treatments do(Xt) following σtX , and re-
ceives subsequent outcome Y t. The cumulative regret up to
episode T is defined asR(T,M∗) =

∑T
t=1(Eσ∗

X
[Y ]−Y t),

i.e, the loss due to the fact that the algorithm does not always
follow the optimal policy σ∗X . A desirable asymptotic prop-
erty is to have limT→∞R(T,M∗)/T = 0, meaning that
the agent eventually converges and finds the optimal policy
σ∗X . We also consider the Bayesian settings where the actual
SCM M∗ is sampled from a distribution φ∗ over a set of
candidate SCMs in M. The Bayesian regret up to episode T
is defined as R(T, φ∗) = E[R(T,M∗)|M∗ ∼ φ∗]. We will
assess and compare the performance of online algorithms in
terms of the cumulative and Bayesian regret.

With a slight abuse of notation, we denote by ΠMIN =
{DHX 7→ DX : ∀X ∈ X}, the minimal reduction ob-
tained from Reduce(G,Π, Y ). Let S = (∪X∈XHX) \X .
For any policy σX ∈ ΠMIN, EσX

[Y ] could be written as

EσX
[Y ] =

∑
s,x

Ex[Y |s]Px(s)
∏
X∈X

πX(x|hX). (1)

Among quantities in the above equation, only transitional
probabilities Px(s) and immediate outcome Ex[Y |s] are
unknown. It thus suffices to learn Px(s) and Ex[Y |s] to
identify the optimal policy. In the remainder of this paper,
we will focus on the projection GMIN from G over variables
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(a) G

X1

S1

X2

S2 Y

(b) GσX1,X2

X1

S1 S2

(c) G[S1,S2]

Figure 2: (a) A causal diagram G; (b) the manipulated
diagram GσX1,X2

with Π = {DS1
7→ DX1

,D{S1,X1,S2} 7→
DX2
}; (c) the subgraph G[S1,S2].

{S,X, Y }, i.e., GMIN = Proj(G, {S,X, Y }). We will
consistently use Π and G, respectively, to represent the
minimal reduction ΠMIN and the projection GMIN. For conve-
nience of analysis, we will assume that outcome Ex[Y |s]
are provided. However, our methods extend trivially to
settings where Ex[Y |s] are unknown.

3.1. Optimism in the Face of Uncertainty

We now introduce a new online algorithms, OFU-DTR, for
learning the optimal dynamic treatment regime in an un-
known SCM. OFU-DTR follows the celebrated principle
of optimism in the face of uncertainty (OFU). Like many
other OFU algorithms (Auer et al., 2002; Jaksch et al., 2010;
Osband & Van Roy, 2014), OFU-DTR works in phases com-
prised of optimistic planning, policy execution and model
updating. One innovation in our work is to leverage the
causal relationships in the underlying environment that en-
ables us to obtain tighter regret bounds.

The details of the OFU-DTR algorithm are described in
Alg. 2. During initialization, it simplifies the policy space Π
and causal diagram G using Reduce and Proj. OFU-DTR
interacts with the environment through policies in Π in re-
peated episodes of t = 1, . . . , T . At each episode t, it
maintains a confidence set Pt over possible parameters of
Px(s) from samples collected prior to episode t. We will
discuss the confidence set construction later in this section.
Given a confidence set Pt, OFU-DTR computes a policy
σtX by performing optimistic planning. More specifically,
let VσX

(Px(s)) denote the function for EσX
[Y ] given by

Eq. (1). OFU-DTR finds the optimal policy σtX for the
most optimistic instance P tx(s) from Pt that induces the
maximal outcome VσtX (P tx(s)). Since Π is soluble, one
could solve for σtX by extending the standard single pol-
icy update planner (Lauritzen & Nilsson, 2001), which we
describe in (Zhang & Bareinboim, 2020, Appendix D). Fi-
nally, OFU-DTR executes σtX throughout episode t and new
samplesXt,St are collected.

Confidence Set Consider a soluble ordering ≺ on GσX
.

Let S be ordered by S1 ≺ · · · ≺ Sm. For any S(k), let
G[S(k)] be a subgraph of G which includes S(k) and edges

Algorithm 2 OFU-DTR
1: Input: Signature JG,Π, Y K, δ ∈ (0, 1).
2: Initialization: Let Π = Reduce(G,Π, Y ) and let
G = Proj(G, {S,X, Y }).

3: for all episodes t = 1, 2, . . . do
4: Define counts nt(z) for any event Z = z prior to

episode t as nt(z) =
∑t−1
i=1 I{Zi=z}.

5: For any Sk ∈ S, compute estimates

P̂ tx̄k(sk|s̄k \ {sk}) =
nt(x̄k, s̄k)

max
{
nt(x̄k, s̄k \ {sk}), 1

} .
6: Let Pt denote a set of distributions Px(s) such that

its factor Px̄k(sk|s̄k \ {sk}) in Eq. (2) satisfies∥∥Px̄k(·|s̄k\{sk})−P̂ tx̄k(·|s̄k\{sk})
∥∥

1
≤ fSk(t, δ),

where fSk(t, δ) is a function defined as

fSk(t, δ) =

√
6|DSk | log(2|S||D(S̄k∪X̄k)\{Sk}|t/δ)

max
{
nt(x̄k, s̄k \ {sk}), 1

} .

7: Find the optimistic policy σtX such that

σtX = arg max
σX∈Π

max
P tx(s)∈Pt

VσX
(P tx(s)) (3)

8: Perform do(σtX) and observeXt,St.
9: end for

among its elements. It follows from (Tian, 2002, Lem. 11)
that Px(s) factorize over c-components in G.

Corollary 1. Given JG,Π, Y K, for any Sk ∈ S, let S̄k
denote a c-component in G[S(k)] that contains Sk and let
X̄k = Pa(S̄k)G \ S̄k. Px(s) could be written as:

Px(s) =
∏
Sk∈S

Px̄k(sk|s̄k \ {sk}). (2)

Consider the causal diagram G of Fig. 2a as an example. By
definition, the policy space Π described in Fig. 2b is mini-
mal. Thus, S = {S1, S2},X = {X1, X2}. We observes in
Fig. 2c that {S2} is the c-component in subgraph G[S1,S2]

that contains S2; c-component {S1} contains S1 in G[{S1}].
Corol. 1 implies Px1,x2(s1, s2) = P (s1)Px1(s2), which
gives Px1,x2(s2|s1) = Px1(s2) and Px1,x2(s1) = P (s1).

At each episode t, OFU-DTR computes the empirical estima-
tor P̂ tx̄k(sk|s̄k\{sk}) for each factor in Eq. (2). Specifically,
for samples Ht = {Xi,Si}t−1

i=1 collected prior to episode t,
P̂ tx̄k(sk|s̄k\{sk}) is the relative frequency of event Stk = sk
at the state S̄tk \ {Stk} = s̄k \ {sk}, X̄t

k = x̄k. The con-
fidence set Pt is defined as a series of convex intervals
centered around estimates P̂ tx̄k(sk|s̄k \ {sk}) (Step 6). The
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adaptive sampling process of OFU-DTR ensures the identi-
fiability of interventional probabilities Px̄k(sk|s̄k \ {sk}).

Lemma 4. Given JG,Π, Y K, for any Sk ∈ S and any σX ∈
Π, PσX

(sk|x̄k, s̄k \ {sk}) = Px̄k(sk|s̄k \ {sk}).

We are now ready to analyze asymptotic properties of
OFU-DTR, which will lead to a better understanding of
their theoretical guarantees.

Theorem 3. Given JG,Π, Y K, fix a δ ∈ (0, 1). With proba-
bility (w.p.) at least 1− δ, it holds for any T > 1, the regret
of OFU-DTR is bounded by

R(T,M∗) ≤ ∆(T, δ) + 2|S|
√
T log(2|S|T/δ), (4)

where ∆(T, δ) is a function defined as

∆(T, δ) =
∑
Sk∈S

17
√
|DS̄k∪X̄k

|T log(|S|T/δ).

OFU-DTR improves over the state-of-art online algorithms
for DTRs. Consider again the policy space Π in Fig. 2b.
Oblivious of the causal diagram G, the algorithm developed
in (Zhang & Bareinboim, 2019) leads to a near-optimal
regret Õ(

√
|D{S1,S2,X1}|T ) 2 3. Thm. 3 implies that

OFU-DTR achieves a regret bound Õ(
√
|D{S2,X1}|T ), re-

moving the factor of
√
|D{S1}|. In general, if |DS̄k∪X̄k

| <
|DS∪X | for some Sk, OFU-DTR outperforms state-of-art
methods by exploiting the causal knowledge of G.

3.2. Posterior Sampling

We now introduce an alternative algorithm, PS-DTR, based
on the heuristics of posterior sampling (Thompson, 1933;
Strens, 2000; Osband et al., 2013). We will focus on the
Bayesian settings where the actual M∗ is drawn from a set
of candidate SCMs M following a distribution φ∗. The
details of PS-DTR are described in Alg. 3. In addition to
JG,Π, Y K, PS-DTR assumes the access to a prior φ over
the interventional probabilities Px(s), i.e.,

φ(θ) =
∑
M∈M

I{PMx (s)=θ}φ
∗(M). (5)

In practice, for the discrete domains, φ could be the product
of a series of uninformative Dirichlet priors. Similar to
OFU-DTR, PS-DTR first simplifies the policy space Π and
causal diagram G and proceeds in repeated episodes. At
each episode t, PS-DTR updates the posterior φ(·|Ht) from
collected samples Ht = {Xi,Si}t−1

i=1 . It then draws an
sampled estimate of P tx(s) from the updated posteriors.

2D{X2} is omitted since we assume Ex[Y |s] is provided.
3To the best of our knowledge, the family of algorithms pro-

posed in (Zhang & Bareinboim, 2019) are the first adaptive strate-
gies that work regardless of the causal graph, which extends results
for bandits found in the literature (Zhang & Bareinboim, 2017).

Algorithm 3 PS-DTR
1: Input: Signature JG,Π, Y K, prior φ.
2: Initialization: Let Π = Reduce(G,Π, Y ) and let
G = Proj(G, {S,X, Y }).

3: for all episodes t = 1, 2, . . . do
4: Sample P tx(s) ∼ φ(·|Ht).
5: Compute the optimal policy σtX such that

σtX = arg max
σX∈Π

VσX
(P tx(s)). (7)

6: Perform do(σtX) and observeXt,St.
7: end for

In Step 5, PS-DTR computes an optimal policy σtX that
maximizes the expected outcome VσX

(P tx(s)) induced by
the sampled P tx(s). Finally, σtX is executed throughout
episode t and new samplesXt,St are collected.

Theorem 4. Given JG,Π, Y K and a prior φ, if φ satisfies
Eq. (5), it holds for any T > 1, the regret of PS-DTR is
bounded by

R(T, φ∗) ≤ ∆(T, 1/T ) + 1, (6)

where function ∆(T, δ) follows the definition in Thm. 3.

Compared with Thm. 3, the regret bound in Thm. 4 implies
that PS-DTR achieves the similar asymptotic performance
as OFU-DTR. In OFU-DTR, one has to find an optimal pol-
icy σtX for the most optimistic instance in a family of SCMs,
whose distribution Px(s) are imprecise, bounded in a con-
vex polytope Pt (Eq. (3)). On the other hand, the policy
σtX in PS-DTR is a solution for SCMs with fixed probabil-
ities P tx(s). Since Π is soluble, such policy σtX could be
obtained using the standard dynamic program solvers (Nils-
son & Lauritzen, 2000; Koller & Milch, 2003). Preliminary
analysis reveals that solving for the optimal policy with with
imprecise probabilities performs at least the double of the
number of arithmetic operations required with fixed-point
values (Cabañas et al., 2017). This suggests that PS-DTR
is more computationally efficient compared to OFU-DTR.

4. Learning From Observational Data
Algorithms introduced so far learn the optimal policy
through repeated experiments from scratch. In many ap-
plications, however, conducting experiments in the actual
environment could be extremely costly and undesirable due
to unintended consequences. A natural solution is to ex-
trapolate knowledge from the observational data, so that the
future online learning process could be accelerated.

Given the causal diagram G, one could apply standard causal
identification algorithms (Tian, 2002; Tian & Pearl, 2002;
Shpitser & Pearl, 2006; Huang & Valtorta, 2006) to esti-
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mate the causal effect (e.g., Px̄k(sk|s̄k \ {sk})) from the
observational distribution P (v). However, challenges of
non-identifiability could arise and the target effects may be
not uniquely computable from the data.

Inferring about treatment effects in non-identifiable settings
has been a target of growing interest in the domains of
causal inference (Balke & Pearl, 1995; Chickering & Pearl,
1996; Richardson et al., 2014; Zhang & Bareinboim, 2017;
Kallus & Zhou, 2018; Kallus et al., 2018; Cinelli et al.,
2019). To address this challenge, we consider a partial
identification approach which reduces the parameter space
of causal effects from the observational data, called the
causal bounds. Following (Tian & Pearl, 2002), for any
S ⊆ V , we define function Q[S](v) = Pv\s(s). Also,
Q[V ](v) = P (v) and Q[∅](v) = 1. For convenience, we
often omit input v and write Q[S]. Our first result derives
inequality relationships among Q functions.

Lemma 5. For a SCM 〈U ,V ,F , P (u)〉, let subsets S ⊆
C ⊆ V . For a topological ordering≺ in G, letS be ordered
by S1 ≺ · · · ≺ Sk. Q[S] is bounded from Q[C] as:

Q[S] ∈
[
A(S, Q[C]), B(S, Q[C])

]
,

where A(S, Q[C]), B(S, Q[C]) are functions defined as
follows. LetW = An(S)G[C]

. IfW = S,

A(S, Q[C]) = B(S, Q[C]) = Q[W ],

where Q[W ] =
∑
c\wQ[C]; otherwise,

A(S, Q[C]) = max
z

Q[W ],

B(S, Q[C]) = min
z

{
Q[W ]−

∑
sk

Q[W ]

}
+B(S \ {Sk}, Q[C]),

where Z = Pa(W )G \ Pa(S)G .

While this result may appear non-trivial, Lem. 5 generalizes
the natural bounds in (Manski, 1990) to longitude settings.
For instance, in Fig. 2a, Px1

(s1, s2) is not identifiable due to
the presence of UCs (i.e.,X1 ↔ S1). LetS = {S1, S2} and
C = {S1, S2, X1}. Lem. 5 allows us to bound Px1(s1, s2)
from P (s1, s2, x1) as Px1(s1, s2) ≥ P (s1, s2, x1) and
Px1

(s1, s2) ≤ P (s1, s2, x1)− P (s1, x1) + P (s1).

Theorem 5 (C-component Bounds). Given JG,Π, Y K, for
any Sk ∈ S, let C be a c-component in G that contains
S̄k. LetCk = C ∩S(k) and letZ = Pa(Ck)G \Pa(S̄k)G .
Px̄k(sk|s̄k \ {sk}) is bounded in

[
ax̄k,s̄k , bx̄k,s̄k

]
where

ax̄k,s̄k = max
z

{
A(Ck, Q[C])/B(Ck \ {Sk}, Q[C])

}
,

bx̄k,s̄k = min
z

{
B(Ck, Q[C])/B(Ck \ {Sk}, Q[C])

}
.

Among quantities in the above equation, Q[C] is identi-
fiable from the observational data P (v) following (Tian,
2002, Lem. 7). Thm. 5 improves the DTR bounds in
(Zhang & Bareinboim, 2019) by exploiting the indepen-
dence relationships among variables S. For example, in
Fig. 2a, S1 and S2 are independent under do(x1). That
is, Px1

(s2) = Px1
(s2, s1)/P (s1) for any s1. By Thm. 5,

C = {S1, S2, X1} and Ck = {S1, S2}. Bounding
Q[Ck] from Q[C] gives Px1(s2) ≥ maxs1 P (x1, s2|s1)
and Px1

(s2) ≤ mins1 P (x1, s2|s1)− P (x1|s1) + 1.

4.1. Online Learning with Causal Bounds

We next introduce efficient methods to incorporate the
causal bounds into online learning algorithms. For any Sk ∈
S, let CSk denote a parameter family of Px̄k(sk|s̄k \ {sk})
induced by causal bounds

[
ax̄k,s̄k , bx̄k,s̄k

]
. We denote by C

a sequence {CSk : ∀Sk ∈ S}. Naturally, C defines a family
Pc of parameters for the interventional distribution Px(s).
To incorporate the causal bounds C, OFU-DTR finds the
optimal policy σtX of the most optimistic instance in the
family of probabilities Pc ∩ Pt. That is, we replace the
optimization problem defined in Eq. (3) with the following:

σtX = arg max
σX∈Π

max
P tx(s)∈Pc∩Pt

VσX
(P tx(s)) (8)

Let |CSk | denote the maximal L1 norm of any pair of prob-
ability distributions in Ck, i.e.,

|CSk | = max
x̄k,s̄k\{sk}

∑
sk

∣∣ax̄k,s̄k − bx̄k,s̄k ∣∣.
We are now ready to derive the regret bound of OFU-DTR
that incorporate causal bounds C through Eq. (8).

Theorem 6. Given JG,Π, Y K and causal bounds C, fix a
δ ∈ (0, 1). W.p. at least 1− δ, it holds for any T > 1, the
regret of OFU-DTR is bounded by

R(T,M∗) ≤ ∆(T,C, δ) + 2|S|
√
T log(2|S|T/δ),

where function ∆(T,C, δ) is defined as∑
Sk∈S

min

{
|CSk |T, 17

√
|DS̄k∪X̄k

|T log(|S|T/δ)
}
.

It follows immediately that the regret bound in Thm. 6
is smaller than the bound given by Thm. 3 if T <
122|DS̄k∪X̄k

|T log(|S|T/δ)/|CSk |2 for some Sk. This
means that the causal bounds C give OFU-DTR a head start
when bounds C are informative, i.e., the dimension |CSk | is
small for some Sk. When Px̄k(sk|s̄k \ {sk}) is identifiable,
i.e., |CSk | = 0, no exploration is required.

Posterior Sampling We also provide an efficient method
to account for the observational data through causal bounds
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(a) Lung Cancer (b) Lung Cancer (c) Dyspnoea (d) Dyspnoea

Figure 3: Simulations comparing the sequential multiple assignment randomized trail (rand), OFU-DTR algorithm (ofu-dtr),
PS-DTR algorithm (ps-dtr) and UC-DTR algorithm (uc-dtr). We use superscript + to indicate algorithms warm-started
with causal bounds derived from the confounded observational data (ofu-dtr+, ps-dtr+, uc-dtr+).

C in PS-DTR. We will employ a rejection sampling proce-
dure which repeatedly samples from φ until the sampled
estimate P tx(s) is compatible with the parameter family Pc.
That is, we replace Step 4 in PS-DTR with the following:

repeat P tx(s) ∼ φ(·|Ht) until P tx(s) ∈ Pc

The remainder of PS-DTR proceeds accordingly, without
any modification. We next show that the above proce-
dure allows PS-DTR to achieve the similar performance
as OFU-DTR provided with the causal bounds C.

Theorem 7. Given JG,Π, Y K, a prior φ and causal bounds
C, if φ satisfies Eq. (5), it holds for any T > 1, the regret of
PS-DTR is bounded by

R(T, φ) ≤ ∆(T,C, 1/T ) + 1, (9)

where function ∆(T,C, δ) follows the definition in Thm. 6.

Thm. 7 implies that PS-DTR provided with causal bounds
C consistently dominate its counterpart without using any
observational data in terms of the performance. The con-
dition of improvements coincides with that of OFU-DTR,
which we show in Thm. 6.

5. Experiments
We evaluate the new algorithms on several SCMs, including
multi-stage treatment regimes for lung cancer (Nease Jr &
Owens, 1997) and dyspnoea (Cowell et al., 2006). We found
that the new algorithms consistently outperform the state-
of-art methods in terms of both the online performance and
the efficiency of utilizing the observational data.

Throughout all the experiments, we test OFU-DTR algo-
rithm (ofu-dtr) with failure tolerance δ = 1/T , OFU-DTR
with causal bounds (ofu-dtr+) with causal bounds derived
from the observational data, PS-DTR algorithm (ps-dtr)
using uninformative dirichlet priors, and PS-DTR incor-
porating causal bounds via rejection sampling (ps-dtr+).

As a baseline, we also include the sequential multiple as-
signment randomized trail (rand), UC-DTR algorithm (uc-
dtr), and causal UC-DTR algorithm (uc-dtr+) developed in
(Zhang & Bareinboim, 2019). To emulate the unobserved
confounding, we generate 2 × 106 observational samples
using a behavior policy and hide some of the covariates (i.e.,
some columns). Each experiment lasts for T = 5.5× 103

episodes. For all algorithms, we measure their average re-
gretsR(T,M∗)/T over 100 repetitions. We refer readers to
(Zhang & Bareinboim, 2020, Appendix E) for more details
on the experiments.

Lung Cancer We test the model of treatment regimes
for lung cancer described in (Nease Jr & Owens, 1997).
Given the results of CT for mediastinal metastases, the physi-
cian could decide to perform an additional mediastinoscopy
test. Finally, based on the test results and treatment his-
tories, the physician could recommend a thoracotomy or
a radio therapy. The average regret of all algorithms are
reported in Fig. 3a. We find that our algorithms (ofu-dtr,
ofu-dtr+), leveraging the causal diagram, demonstrate faster
convergence compared to the state-of-art methods (uc-dtr,
uc-dtr+). The causal bounds derived from the observational
data generally improve the online performance (ofu-dtr+,
uc-dtr+). By exploiting sharper causal bounds, ofu-dtr+

finds the optimal treatment policy almost immediately while
uc-dtr+ still does not converge until 4× 103 episodes. We
also compare the performance of OFU-DTR and PS-DTR
in Fig. 3b. In the pure online settings (without any pre-
vious observation), ps-dtr shows faster convergence than
ofu-dtr. Provided with the same causal bounds, ps-dtr+

rivals ofu-dtr+ in terms of the performance and finds the
optimal policy after only 500 episodes.

Dyspnoea We test the model of treatment regimes for
dysponea (shortness of breath) described in (Cowell et al.,
2006), called DEC-ASIA. Based on the patients’ travel his-
tory, the physician could decide to perform a chest X-ray.
If a test is carried out, the doctor has access to the results
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and the symptom of dysponea at the time she determin-
ing whether to hospitalize or not. We measure the average
regrets for all algorithms, reported in Figs. 3c and 3d. As ex-
pected, OFU-DTR consistently outperforms the state-of-art
methods UC-DTR in terms of both the online performance
(ofu-dtr, uc-dtr) and the efficiency of extrapolating obser-
vational data (ofu-dtr+, uc-dtr+). Compared to OFU-DTR,
PS-DTR demonstrates faster convergence in the pure online
settings (ps-dtr) and achieves similar regrets when obser-
vational data are provided (ps-dtr+). These results suggest
that PS-DTR seems to be an attractive option in practice.

6. Conclusion
We present the first online algorithms with provable regret
bounds for learning the optimal dynamic treatment regime
in an unknown environment while leveraging the order rela-
tionships represented in the form of a causal diagram. These
algorithms reduce the learning problem to finding an opti-
mal policy for the most optimistic instance from a family of
causal models whose interventional distributions are impre-
cise, bounded in a set of convex intervals. We believe that
our results provide new opportunities for designing dynamic
treatment regimes in unknown, and structured environments,
even when the causal effects of candidate policies are not
point-identifiable from the confounded observational data.
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Appendix A. Proofs of Results in Section 2.1
In this section, we provide proofs for the results presented in
Sec. 2.1. We first introduce some notations and lemmas that
will be instrumental in the proofs. For a DAGG and a subset
of nodesX , we denote by GX a subgraph ofG by removing
all incoming arrow into X; GX stands for a subgraph of
G by removing all outgoing arrow of X . For a signature
JG,Π, Y K, we will consistently use GσX

to represent the
manipulated diagram of Π. For a subset X ′ ⊆ X , let
GσX′ be a manipulated diagram obtained from G and Π
by changing parents to each treatment node X ∈ X ′ to
nodes in HX ; arrows pointing to other treatmentsX \X ′
remain the same. For a reduction Π′ of policy space Π,
unless it is explicitly specified, the manipulated diagram
of Π′ is denoted by Gσ′

X′
. For any policy σX ∈ Π and

subset of treatmentsX ′ ⊆X , we denote by σX′ a partial
policy obtained from σX with restriction to treatments in
the subsetX ′.

Our proofs depend on the three inference rules of σ-calculus
introduced in (Correa & Bareinboim, 2020, Thm. 1). The
rules are derived based on the soundness of d-separation in
DAGs. We first show that some basic causal constraints are
preserved under the removal of irrelevant treatments.

Lemma 6. Given JG,Π, Y K, let subset X̃ ⊆ X \
(X ∩ An(Y ))GσX . For any treatment X ∈ X , X 6∈
An(Y )Gσ

X\X̃
if and only if X 6∈ An(Y )GσX .

Proof. We first prove the “if” direction. For any treatment
X 6∈ An(Y )GσX , suppose there exists a directed path g
(called causal path) from X to Y in GσX\X̃

. Since X 6∈
An(Y )GσX , path g must contain incoming arrows Vj → X ′

for some X ′ ∈ X̃ such that X 6= X ′. Let X ′ denote the
last treatment on l that are in X̃ . We could then obtain from
g a subpath g′ that is a causal path from X ′ to Y in Gσ′

X′
.

Since X ′ is the last treatment on g that is in X̃ , the subpath

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

g′ must also exists in GσX
, i.e., X ′ ∈ An(Y )GσX , which is

a contradiction.

We now prove the “only if” direction. Suppose there exists
a treatment X ∈ An(Y )GσX but X 6∈ An(Y )Gσ

X\X̃
. Let

g denote a causal path from X to Y in GσX
. Since X 6∈

An(Y )Gσ
X\X̃

, path g must contain incoming arrows Vj →
X ′ for some X ′ ∈ X̃ such that X 6= X ′. Let X ′ denote
the last treatment on l that are in X̃ . We could thus obtain
a causal path g′ from X ′ to Y in GσX

. This means that
X ′ ∈ An(Y )GσX , which is a contradiction.

Lem. 6 allows us to show that the acyclicity is preserved
under reduction.

Lemma 7. Given JG,Π, Y K, let Π′ be a reduction of Π.
Let Gσ′

X′
denote the manipulated diagram of Π′. Gσ′

X′
is

acyclic if G and GσX
are acyclic.

Proof. It suffices to prove that the acyclicity is preserved
under the removal of irrelevant treatments and evidences.
Suppose Π′ is a reduction of Π obtained by removing irrele-
vant evidences S̃ 7→ X . Since GσX

is a DAG and removing
arrows from a DAG does not create cycles, Gσ′

X′
is acyclic.

Consider now that Π′ is a reduction of Π obtained by remov-
ing irrelevant treatments X̃ . Suppose there exists a cycle
l in Gσ′

X′
. Since both G and GσX

are acyclic, there must

exist a pair X1, X2 on l where X1 ∈ X̃ and X2 ∈X \ X̃ .
Lem. 6 implies that X1 6∈ An(Y )Gσ′

X′
. By definitions,

X2 ∈ An(Y )GσX , i.e., there exist a causal path g from X2

to Y in GσX
. Since X̃ are irrelevant in GσX

, g must not con-
tain any incoming arrow Vi → X ′ where X ′ ∈ X̃ . That is,
path g is preserved in Gσ′

X′
. We could thus obtain a causal

path from X1 to Y by concatenating g with a subsequence
in l from X1 to X2, which is a contradiction.

We are now ready to prove the results presented in Sec. 2.2.
By Lem. 7, any reduction Π′ of the policy space Π will
induce a DAG Gσ′

X′
. We could thus assume without loss of

generality that for any signature JG,Π, Y K of interest, the
manipulated graph GσX

must be a DAG. We will use this
assumption throughout the proof.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

“Causal Reinforcement Learning for Optimal Dynamic Treatment Regimes” Supplemental Materials

Lemma 1. Given JG,Π, Y K, Π \ X̃ is equivalent to Π if
treatments X̃ are irrelevant.

Proof. Let Π′ denote the reduction Π \ X̃ . By definitions,
X̃ = X \ An(Y )GσX . For any σX ∈ Π, let σX\X̃ de-
note its partial policy with restriction inX \ X̃; naturally,
σX\X̃ ∈ Π′. Lem. 6 implies that Y is not a non-descendant
of X̃ in GσX\X̃

. We thus have

(Y ⊥⊥ X̃)G
σXX̃

, (Y ⊥⊥ X̃)G
σ
X\X̃X̃

.

Lem. 7 implies that Gσ′
X′

is a DAG. The acyclicity guar-
antee, together with the above independence relationships,
gives that

PσX
(y) = PσX\X̃

(y).

The above equality is ensured by (Correa & Bareinboim,
2020, Thm. 1), which proves the statement.

Lemma 2. Given JG,Π, Y K, Π \ {S̃ 7→ X} is equivalent
to Π if evidences S̃ 7→ X are irrelevant.

Proof. Let Π′ denote the reduction Π \ {S̃ 7→ X}. If
X 6∈ An(Y )GσX , we have

(Y ⊥⊥ X)GσXX
.

where GσXX
is a subgraph of GσX

by removing incoming
arrows into X . By Rule 3 of (Correa & Bareinboim, 2020,
Thm. 1), the above independence relationship implies that,
for any policy σX ∈ Π and any σ′X ∈ {DHX 7→ DX},

PσX\X ,σX (y) = PσX\X ,σ
′
X

(y).

Let the decision rule σ′X ∈ {DHX\S̃ 7→ DX} and let σ′X =

{σX\X , σ′X}. We thus obtain a policy σ′X ∈ Π′ such that
EσX

[Y ] = Eπ′ [Y ].

We now consider the case whereX ∈ An(Y )GσX . By basic
probabilistic operations,

PσX
(y) =

∑
hX ,x

PσX\X ,x(hX)σX(x|hX)PσX\X ,x(y|hX).

(10)

Since S̃ 7→ X are irrelevant,

(Y ⊥⊥ S̃|HX+ \ S̃)GσX .

Since HX are all parent nodes of X in GσX
, the above

independence relationship is equivalent to

(Y ⊥⊥ S̃|HX \ S̃)GσXX
.

By Rule 1 of (Correa & Bareinboim, 2020, Thm. 1), this
relationship implies that:

PσX\X ,x(y|hX) = PσX\X ,x(y|hX \ s̃). (11)

Eqs. (10) and (11) together gives

PσX
(y) =

∑
hX\s̃,x

PσX\X ,x(y|hX \ s̃)

·
∑
s̃

PσX\X ,x(hX)σX(x|hX)

=
∑

hX\s̃,x

PσX\X ,x(y|hX \ s̃)

· PσX\X ,x(hX \ s̃)σ′X(x|hX \ s̃). (12)

where σ′X(x|hX \ s̃) is a function given by:

σ′X(x|hX \ s̃) =

∑
s̃ PσX\X ,x(hX)σX(x|hX)

PσX\X ,x(hX \ s̃)
.

Since X is not an ancestor of HX in GσXX
, PσX\X ,x(hX)

is not a function of x. Therefore,∑
x

σ′X(x|hX \ s̃) =
∑
x

∑
s̃ PσX\X ,x(hX)σX(x|hX)

PσX\X ,x(hX \ s̃)

=

∑
s̃ PσX\X ,x(hX)

∑
x σX(x|hX)

PσX\X ,x(hX \ s̃)

=

∑
s̃ PσX\X ,x(hX)

PσX\X ,x(hX \ s̃)
= 1.

Therefore, σ′X is a decision rule in the probabilistic space
of {DHX\S̃ 7→ DX}. Let σ′X = {σX\X , σ′X}. Eq. (12)
implies

PσX
(y) = Pσ′X (y),

which completes the proof.

Lemma 3. Given JG,Π, Y K, a reduction Π′ of the policy
space Π is soluble if Π is soluble.

Proof. Let≺ denote the a total ordering overX induced by
the soluble ordering of Π. We first show that ≺ is preserved
under reduction, and first the removal of irrelevant evidences
S̃ 7→ X . For any Xj ∈ X , if Xj 6= X , since d-separation
is preserved under edge removal, for any Xi ≺ Xj ,

(σXi ⊥⊥ {Y } ∩De(Xj)|HX+
j

)Gσ′
X′
.

Consider the case that Xj = X . Since S̃ is irrelevant for
Xj , by definitions, we have

({Y } ∩De(Xj) ⊥⊥ S̃|HX+
j
\ S̃)GσX .

Since ≺ is a soluble ordering, for any Xi ≺ Xj ,

({Y } ∩De(Xj) ⊥⊥ σXi |HX+
j

)GσX .

By the contraction axiom (Pearl, 2000, Ch. 1.1.5),

({Y } ∩De(Xj) ⊥⊥ σXi , S̃|HX+
j
\ S̃)GσX .
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which implies

({Y } ∩De(Xj) ⊥⊥ σXi |HX+
j
\ S̃)GσX .

Since d-separation is preserved under edge removal, the
above independence also holds in Gσ′

X′
. That is, the total

ordering ≺ is preserved.

We now consider the case where Π′ is a reduction of Π
obtained by removing irrelevant treatments X̃ = X \
An(Y )GσX . That is, for any σX ∈ Π, σX\X̃ ∈ Π′. By
definitions, for a soluble ordering ≺, for any Xi ≺ Xj ,

({Y } ∩De(Xj) ⊥⊥ σXi |HX+
j

)GσX .

If Xi ∈ X̃ , by Lem. 6, Xi 6∈ An(Y )Gσ
X\X̃

. The above
relationship is preserved in GσX\X̃

. It thus suffices to focus

on the settings where Xi 6∈ X̃ .

For any Xj 6∈ X̃ , by definitions, X̃ must not contain any
ancestor of {HXj , Xj , Y } in GσX

. That is,

({Y,HXj , Xj} ⊥⊥ X̃)G
σX X̃

. (13)

Similarly, by Lem. 6, we have

({Y,HXj , Xj} ⊥⊥ X̃)G
σ
X\X̃ X̃

. (14)

By Rules 3 of (Correa & Bareinboim, 2020, Thm. 1),
Eqs. (13) and (14) imply that

PσX
(y|hXj , xj) = PσX\X̃

(y|hXj , xj). (15)

Since ≺ is a soluble ordering, for any Xi ≺ Xj ,

({Y } ∩De(Xj) ⊥⊥ σXi |HX+
j

)GσX .

By (Koller & Milch, 2003, Lem. 5.2) (which can be seen as
the combination of Rules 2 and 3 in (Correa & Bareinboim,
2020, Thm. 1)), we have for any σX ∈ Π and any decision
rule σ′Xi ∈ {DHXi

7→ DXi},

PσX
(y|hXj , xj) = PσX\{Xi},σ

′
Xi

(y|hXj , xj). (16)

Eqs. (15) and (16) imply that for any σX\X̃ ∈ Π′ and any
σ′Xi ∈ {DHXi

7→ DXi},

PσX\X̃
(y|hXj , xj) = PσX\(X̃∪{Xi})

,σ′Xi
(y|hXj , xj).

in any SCM M conforming to G. By the completeness of
d-separation, for any treatment Xi ≺ Xj in GσX\X̃

({Y } ∩De(Xj) ⊥⊥ σXi |HX+
j

)Gσ
X\X̃

.

It is now sufficient to show that ≺ does not violate the
topological ordering in Gσ′

X′
. If Π′ is a reduction obtained

from Π by removing irrelevant evidences, a topological
ordering in GσX

is preserved under edge removal. Therefore,
Π′ is soluble.

Consider now Π′ is a reduction obtained from Π by remov-
ing irrelevant treatments X̃ = X \ An(Y )GσX . Suppose
there exists a pair Xi, Xj ∈ (X \ X̃) such that Xi ≺ Xj

and Xj ∈ An(Xi)Gσ′
X′

. Let g be a causal path from Xj

to Xi in Gσ′
X′

. Since ≺ is a topological ordering in GσX
,

Xj 6∈ An(Xi)GσX . Path g must contains an incoming edge
Vi → X ′ for some X ′ ∈ X̃ . Let X ′ be the last such treat-
ment node on g. By definitions, Xi ∈ An(Y )GσX . We
could thus obtain from g a causal path g′ from X ′ to Y .
That is, X ′ ∈ An(Y )GσX , which is a contradiction.

This means that ≺ respects the ancestral relationships
among X \ X̃ in Gσ′

X′
. Since Gσ′

X′
is a DAG (Lem. 7),

there must exist a topological ordering in Gσ′
X′

compatible
with ≺, which proves the statement.

Theorem 2. Given JG,Π, Y K, Reduce returns the minimal
reduction ΠMIN of a soluble policy space Π.

Proof. By the graphoid axioms of contraction and weak
unions (Pearl, 2000, Ch. 1.1.5), it is verifiable that the re-
duction Π after Step 7 has no irrelevant evidences. By
definitions, for any treatment X 6∈ An(Y )GσX , all of its
evidences are irrelevant. That is, the manipulated graph
GσX

coincides with the subgraph G
σXX̃

where X̃ =

X \ (X ∩ An(Y ))GσX . Therefore, removing irrelevant
treatments X̃ only adds arrows into X̃ in the graph GσX

.
Since adding arrows into a DAG does not introduce in-
dependence, Π \ X̃ has no irrelevant evidence. That is,
Reduce(G,Π, Y ) returns the minimal reduction ΠMIN.

Proof of Theorem 1

In this section, we will provide proofs for the uniqueness
of the minimal reduction. We first define the stepwise re-
duction, which searches through the space of reductions in
a sequential, stepwise fashion.

Definition 7. Given JG,Π, Y K, a policy space Π′ is a step-
wise reduction of Π if it is obtainable from Π by successively
applying the following operations:

1. Π′ = Π \ {X} where X is a treatment inX such that
X 6∈X ∩An(Y )GσX .

2. Π′ = Π \ {S 7→ X} where S is an evidence in HX for
a treatmentX such that ({Y }∩De(X) ⊥⊥ {S}|HX+\
{S})GσX .

Similarly, unless it is explicitly specified, we denote by
Gσ′

X′
the manipulated diagram of a stepwise reduction Π′
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obtained from JG,Π, Y K. We also define the minimal step-
wise reduction as one that does not contain any irrelevant
treatment and evidence.

Definition 8. Given JG,Π, Y K, a stepwise reduction ΠS-MIN

of Π is minimal if it has no stepwise reduction.

The operation of stepwise reduction have some interesting
properties, and first, the preservation of irrelevant treatments
and evidences.

Lemma 8. Given JG,Π, Y K, let Π′ be a stepwise reduction
of Π. For any treatment X ∈ X , if X 6∈ An(Y )GσX , then
X 6∈ An(Y )Gσ′

X′
.

Proof. Suppose Π′ is a stepwise reduction obtained by re-
moving irrelevant some treatments X̃ ⊆ X \ An(Y )GσX .
The proof follows immediately from Lem. 6.

If Π′ is a stepwise reduction of Π obtained by removing irrel-
evant evidences. If X 6∈ An(Y )GσX , X is not an ancestor
of Y in any subgraph of GσX

, i.e., X 6∈ An(Y )Gσ′
X′

.

Lemma 9. Given JG,Π, Y K, let Π′ = {DH′X
7→ DX :

∀X ∈X ′} be a stepwise reduction of Π. For any X ∈X ′,
any evidence S ∈ HX , if ({Y } ∩ De(X) ⊥⊥ S|HX+ \
S)GσX , then ({Y } ∩De(X) ⊥⊥ S|H ′X+ \ S)Gσ′

X′
.

Proof. Suppose that Π′ is a stepwise reduction of Π ob-
tained by removing irrelevant evidences. It follows from
(Lauritzen & Nilsson, 2001, Lem. 7) that an irrelevant evi-
dence is preserved by removing other irrelevant evidences.

We now consider the case where Π′ is a stepwise reduction
obtained by removing an irrelevant treatment X ′ ∈ (X \
An(Y ))GσX ; therefore, X ′ = X \ {X ′} and H ′X = HX

for any X ∈ X ′. If X 6∈ An(Y )GσX , Lem. 6 implies that
X 6∈ An(Y )Gσ′

X′
. Therefore, the following independence

relationship trivially holds.

({Y } ∩De(X) ⊥⊥ H|H ′X+ \H)Gσ′
X′
.

Suppose now X ∈ An(Y )GσX . Since X ′ 6∈ An(Y )GσX ,
Lem. 6 implies that implies that X ∈ An(Y )Gσ′

X′
and

X ′ 6∈ An(Y )Gσ′
X′

. This implies that HX and X are non-
descendants of X in Gσ′

X′
.

Since ({Y } ∩ De(X) ⊥⊥ H|HX+ \H)GσX , the path con-
necting H to Y given HX+ \H in Gσ′

X′
must be due to the

change of incoming arrows into X ′. If changing incoming
arrows into X ′ opens a path containing V1 → V ← V2

where V ∈ An(X ′)Gσ′
X′

, there must exists a causal path

from X ′ to a node in HX+ \H . That is X ′ is an ancestor
for a node in HX , X , which is a contradiction.

Suppose now changing incoming arrows into X ′ opens a
path containing V1 ← X ′ ← V2 in Gσ′

X′
. By definitions

of d-separation, there must exist a causal path from X ′ to
a node in HX , X, Y in Gσ′

X′
. Since HX , X, Y are non-

descendants of X in Gσ′
X′

, we have a contradiction, which
completes the proof.

Lems. 8 and 9 imply that for any reduction operation, one
could simulate it through a series of stepwise reduction.
Therefore, we could attain any reduction of the policy space
Π through equivalent stepwise reductions.

Lemma 10. Given JG,Π, Y K, any reduction Π′ of Π is a
stepwise reduction of Π; any minimal reduction ΠMIN of Π
is a minimal stepwise reduction of Π.

Proof. Lems. 8 and 9 imply that any reduction of a policy
space Π could be performed stepwise. That is, any reduc-
tion of Π is also a stepwise reduction. Since the minimal
condition of reduction and stepwise reduction are equiv-
alent, any minimal reduction ΠMIN of Π has no stepwise
reduction.

Since any minimal reduction of Π is also a minimal step-
wise reduction, the set of all possible minimal stepwise
reductions of Π must contain all minimal reductions of Π.
If the minimal stepwise reduction is unique, then Π has at
most one minimal reduction. For any two policy spaces
Π1 = {DH1

X
7→ DX : ∀X ∈ X1} and Π2 = {DH2

X
7→

DX : ∀X ∈ X2}, we define their intersection Π1 ∩ Π2

as a policy space {DH1
X∩H2

X
7→ DX : ∀X ∈ X1 ∩X2}.

The following results establishes the uniqueness of minimal
stepwise reduction.

Lemma 11. Given JG,Π, Y K, let Π1 and Π2 be two step-
wise reductions of Π. Then Π1 ∩Π2 is a stepwise reduction
of both Π1 and Π2.

Proof. Let m1,m2 be the number of reduction steps re-
quired to obtain Π1 and Π2 from Π respectively. We will
show the results by induction after m = m1 +m2.

For m = 2, the result follows directly from Lems. 8 and 9.
Suppose the result holds for m ≤ k, where k ≥ 2 and
consider the case m = k + 1. So max{m1,m2} > 1, say
m2 > 1. Thus Π1 is obtained by successively removing m2

irrelevant treatments or evidences from Π. Let Π′2 be the
stepwise reduction obtained by removing the first m2− 1 of
these. By the induction assumption, Π1 ∩Π′2 is a stepwise
reduction of Π′2 obtained by moving at most m1 steps from
Π2. Furthermore, Π2 is also a stepwise reduction of Π′2
obtained by removing exactly one irrelevant treatment or
evidence. Since (Π1∩Π′2)∩Π2 = Π1∩Π2 andm1+1 ≤ k,
the induction assumptions yields that Π1 ∩Π2 is a stepwise
reduction of Π2.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

“Causal Reinforcement Learning for Optimal Dynamic Treatment Regimes” Supplemental Materials

Similarly, the induction assumptions gives Π1 ∩ Π2 is a
stepwise reduction of Π1 ∩ Π′2 and also that Π1 ∩ Π′2 is
a stepwise reduction of Π1. By definitions, Π1 ∩ Π2 is a
stepwise reduction of Π and the proof is complete.

Lemma 12. Given JG,Π, Y K, there exists a unique minimal
stepwise reduction ΠS-MIN of Π.

Proof. Suppose there exists two different minimal stepwise
reduction Π1 and Π2. Lem. 10 implies that Π1 ∩ Π2 is
reduction of both Π1 and Π2, which is a contradiction.

Finally, we are ready to prove the uniqueness of the minimal
reduction of a policy space.

Theorem 1. Given JG,Π, Y K, there exists a unique minimal
reduction ΠMIN of policy space Π.

Proof. By Lem. 10, any minimal reduction ΠMIN of Π is also
a minimal stepwise reduction ΠS-MIN. Since ΠS-MIN is unique
(Lem. 12), there exists at most one minimal reduction ΠMIN.
Since ΠMIN is well defined from JG,Π, Y K, Π must have a
unique minimal reduction.

Appendix B. Proofs of Results in Section 3
In this section, we provide proofs for the results presented
in Sec. 3. We will use the notation in (Tian, 2002) and
define function Q[S](v) = Pv\s(s) for an arbitrary subset
S ⊆ V . Naturally, Q[V ](v) = P (v) and Q[∅](v) = 1.
For convenience, we often omit input v and write Q[S].

Corollary 1. Given JG,Π, Y K, for any Sk ∈ S, let S̄k
denote a c-component in G[S(k)] that contains Sk and let
X̄k = Pa(S̄k)G \ S̄k. Px(s) could be written as:

Px(s) =
∏
Sk∈S

Px̄k(sk|s̄k \ {sk}). (17)

Proof. SinceS are ordered following a topological ordering
≺, Sk 6∈ An(S̄k−1)G for any Sk. By (Tian, 2002, Lemma
10), we have

Q[S(k)] =
∑
sk

Q[S(k)].

Px(s) could thus be written as:

Px(s) =
∏
Sk∈S

Q[S(k)]∑
sk
Q[S(k)]

. (18)

LetCk
1 , . . . ,C

k
l denote c-components in G[S(k)] and letCk

1

be the c-component that contains Sk; therefore, S̄k = Ck
1 .

(Tian, 2002, Lem. 11) implies that

Q[S(k)] =
∏

i=1,...,l

Q[Ck
i ]. (19)

Sine Sk 6∈ Pa(Ck
i )G for any i = 2, . . . , l,∑

sk

Q[S(k)] =
∑
sk

Q[Ck
1 ]

∏
i=2,...,l

Q[Ck
i ].

The above equation, together with Eqs. (18) and (19), im-
plies

Px(s) =
∏
Sk∈S

Q[Ck
1 ]∑

sk
Q[Ck

1 ]
.

By definitions, S̄k = Ck
1 and Q[Ck

1 ] = Px̄k(s̄k), which
complete the proof.

Lemma 4. Given JG,Π, Y K, for any Sk ∈ S and any σX ∈
Π, PσX

(sk|x̄k, s̄k \ {sk}) = Px̄k(sk|s̄k \ {sk}).

Proof. By Corol. 1 and basic probabilistic properties,

PσX
(s,x) =

∑
s,x

∏
Sk∈S

Px̄k(sk|s̄k\{sk})
∏
X∈X

σX(x|hX).

Let ≺ be a solution ordering in GσX
. Marginalizing vari-

ables in (S∪X)\(S̄k∪X̄k) according to a reverse ordering
relative to ≺ gives:

PσX
(s̄k, x̄k) = Px̄k(sk|s̄k \ {sk})PσX

(s̄k \ {sk}, x̄k).

The above equation implies that

PσX
(sk|s̄k \ {sk}, x̄k) = Px̄k(sk|s̄k \ {sk})

for any σX ∈ Π, which completes the proof.

Proof of Theorem 3

We begin by introducing some necessary lemmas. We first
show that the confidence set Pt contains the actual interven-
tional distribution Px(s) with high probabilities.

Lemma 13. Fix δ ∈ (0, 1), for any t ≥ 1, with probability
(w.p.) at least 1− δ/(4t2), Px(s) ∈ Pt.

Proof. Fix nt(x̄k, s̄k \ {sk}) in {1, . . . , t− 1}. Since√
2 log(2|DSk

|4t3|S||D(S̄k∪X̄k)\{Sk}|/δ)
max

{
nt(x̄k, s̄k \ {sk}), 1

} ≤ fSk(t, δ)

where fSk(t, δ) is a function defined as

fSk(t, δ) =

√
6|DSk | log(2|S||D(S̄k∪X̄k)\{Sk}|t/δ)

max
{
nt(x̄k, s̄k \ {sk}), 1

}
By the concentration inequality of (Jaksch et al., 2010, C.1),
we have for any Sk ∈ S, any x̄k, s̄k \ {sk},∥∥Px̄k(·|s̄k \ {sk})− P̂ tx̄k(·|s̄k \ {sk})

∥∥
1
> fSk(t, δ).

(20)
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with probability at most δ/(4t3|S||D(S̄k∪X̄k)\{Sk}|).

Hence a union bound over all possible values of nt(x̄k, s̄k \
{sk}) = 1, . . . , t − 1 implies that Eq. (20) holds for any
nt(x̄k, s̄k \ {sk}) with probability at most

t−1∑
n=1

δ

4t3|S||D(S̄k∪X̄k)\{Sk}|
=

δ

4t2|S||D(S̄k∪X̄k)\{Sk}|
.

Summing these error probabilities over state-action pairs
D(S̄k∪X̄k)\{Sk} for all Sk ∈ S gives:

P (Px(s) 6∈ Pt) ≤
δ

4t2
.

Lemma 14. Fix δ ∈ (0, 1). With probabilities (w.p.) at
least 1− δ

2 , for all t = 1, 2, . . . , VσtX (P tx(s)) ≥ Eσ∗X [Y ].

Proof. Since
∞∑
t=1

1

4t2
≤ π2

24
δ <

δ

2
,

it follows from Lem. 13 that with probability at least 1− δ
2 ,

Px(s) ∈ Pt for all episodes t = 1, 2, . . . .

By definitions, σtX is the optimal policy for the instance
P tx(s) in Pt that has the maximal optimal expected outcome.
This implies that

VσtX (P tx(s)) ≥ Vσ∗X (Px(s)) = Eσ∗X [Y ].

Lemma 15. Fix δ ∈ (0, 1). W.p. at least 1 − δ
2 , for any

T > 1,

T∑
t=1

VσtX (P tx(s))− Y t ≤ 2|S|
√
T log(2|S|T/δ)

+
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ).

Proof. For simplicity, let V = S ∪ X . For a solu-
tion ordering ≺ in GσX

, let variables in V be ordered by
V1 ≺ · · · ≺ Vn+m. For any policy σX ∈ Π and any
i = 0, 1, . . . ,m+ n, we define function VσX

(v(i);Px(s))
as following:

VσX
(v(i);Px(s))

=

∑
v 6∈v(i) Ex[Y |s]Px(s)

∏
X∈X σX(x|hX)∑

v 6∈v(i) Px(s)
∏
X∈X σX(x|hX)

Naturally, we have

VσX
(v;Px(s)) = Ex[Y |s].

We can decompose VσtX (P tx(s))−Y t as a telescoping sum:

VσtX (P tx(s))− Y t

=
∑
Vi∈V

VσtX (V (i−1);P tx(s))− VσtX (V (i);P tx(s)).

(21)

It is a well-known fact in decision theory that no stochastic
policy can improve on the utility of the best deterministic
policy (see, e.g., (Liu & Ihler, 2012, Lem. 2.1)). This means
that the policy σtX must be deterministic. We have for any
Vi ∈X ,

VσtX (V (i−1);P tx(s))− VσtX (V (i);P tx(s)) = 0

The above equation allows to write Eq. (21) as:

VσtX (P tx(s))− Y t

=
∑
Vi∈S

VσtX (V (i−1);P tx(s))− VσtX (V (i);P tx(s)). (22)

By Corol. 1,

P tx(s) =
∏
Sk∈S

P tx̄k(sk|s̄k \ {sk}).

For any Vi ∈ S, we denote by Vi = Sk. Let P (i)
x (s) denote

a distribution obtained from P tx(s) such that its associated
distribution P tx̄k(sk|s̄k \ {sk}) is replaced with the actual
Px̄k(sk|s̄k \ {sk}), i.e.,

P (i)
x (s)

= Px̄k(sk|s̄k \ {sk}) ·
∏
Sj 6=Vi

P tx̄j (sj |s̄j \ {sj}). (23)

We could further decompose VσtX (V (i−1);P tx(s)) −
VσtX (V (i);P tx(s)) as follows:

VσtX (V (i−1);P tx(s))− VσtX (V (i);P tx(s))

= VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

+ VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s)).

(24)

Eqs. (21), (22) and (27) together imply:

T∑
t=1

VσtX (P tx(s))− Y t

=
∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

(25)

+
∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s)).

(26)
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Bounding Eq. (25) For Vi ∈ S, we denote by Vi = Sk.
By basic probabilistic operations,

VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

≤
∥∥P tx̄k(·|s̄k \ {sk})− Px̄k(·|s̄k \ {sk})

∥∥
1

·max
sk

{
VσtX (V (i);P tx(s))

}
≤ 2

√
6|DSk | log(2|S||D(S̄k∪X̄k)\{Sk}|t/δ)

max
{
nt(x̄k, s̄k \ {sk}), 1

}
Following the result in (Jaksch et al., 2010, C.3),

T∑
t=1

1√
max

{
nt(x̄k, s̄k \ {sk}), 1

}
≤
∑
x̄k

∑
s̄k\{sk}

(
√

2 + 1)
√
nt(x̄k, s̄k \ {sk})

By Jensen’s inequality we thus have
T∑
t=1

1√
max

{
nt(x̄k, s̄k \ {sk}), 1

}
≤ (
√

2 + 1)
√
|D(S̄k∪X̄k)\{Sk}|T , (27)

which gives∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

≤
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ)

(28)

Bounding Eq. (26) For any Vi ∈ S, we define

Zt(Vi) = VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s)).

Let the sampling history up to episode t be denoted by Ht =
{Xi,Si}t−1

i=1 . Since |Zt(Vi)| ≤ 1 and E[Zt+1(Vi)|Ht] =
0, {Zt(Vi) : t = 1, . . . , T} is thus a sequence of martingale
differences. By Azuma-Hoeffding inequality, we have that
for all Vi ∈ S, with probability at least δ

4T 2 ,

T∑
t=1

Zt(Vi) ≤ 2
√
T log(2|S|T/δ).

Since
∑∞
T=1

1
4T 2 ≤ π2

24 δ <
δ
2 , it follows that with probabil-

ity at least 1− δ
2 ,

∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s))

≤ 2|S|
√
T log(2|S|T/δ). (29)

Bounding Eqs. (25) and (26) with Eqs. (28) and (29) proves
the statement.

Theorem 3. Given JG,Π, Y K, fix a δ ∈ (0, 1). With proba-
bility (w.p.) at least 1− δ, it holds for any T > 1, the regret
of OFU-DTR is bounded by

R(T,M∗) ≤ ∆(T, δ) + 2|S|
√
T log(2|S|T/δ),

where ∆(T, δ) is a function defined as

∆(T, δ) =
∑
Sk∈S

17
√
|DS̄k∪X̄k

|T log(|S|T/δ).

Proof. Suppose

T ≤
∑
Sk∈S

172|DS̄k∪X̄k
| log(|S|T/δ).

Since R(T,M∗) ≤ T = (
√
T )2, the above equation im-

plies that

R(T,M∗) ≤ 17

√∑
Sk∈S

|DS̄k∪X̄k
|T log(|S|T/δ)

≤
∑
Sk∈S

17
√
|DS̄k∪X̄k

|T log(|S|T/δ)

= ∆(T, δ).

We now consider the case where

T >
∑
Sk∈S

172|DS̄k∪X̄k
| log(|S|T/δ). (30)

Lems. 14 and 15 together imply that with probability at least
1− δ

2 −
δ
2 = 1− δ, for any T > 1,

R(T,M∗) ≤
T∑
t=1

VσtX (P tx(s))− Y t

≤ 2|S|
√
T log(2|S|T/δ)

+
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ).

Whenever Eq. (30) holds,

log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ) ≤ 2 log(|S|T/δ).

We thus have

R(T,M∗) ≤ 2|S|
√
T log(2|S|T/δ)

+
∑
Sk∈S

12
√

2|DS̄k∪X̄k
|T log(|S|T/δ)

≤ ∆(T, δ) + 2|S|
√
T log(2|S|T/δ).
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Proof of Theorem 4

Note that in the Bayesian setting, the actual SCM M∗ is
drawn from a distribution φ∗(M) over candidate models in
M. We say that φ is the prior of Px(s) if

φ(θ) =
∑
M∈M

I{PMx (s)=θ}φ
∗(M). (31)

Before we prove Theorem 4, we first introduce some neces-
sary lemmas.

Lemma 16. If φ satisfies Eq. (31), it holds for any T > 1,

T∑
t=1

Eσ∗X [Y ] =

T∑
t=1

E[VσtX (P tx(s))]. (32)

Proof. Let the sampling history Ht = {Xi,Si}t−1
i=1 . Since

φ satisfies Eq. (31), the actual Px(s) and the sampled in-
stance P tx(s) are identically distributed (Osband et al., 2013,
Lem. 1). We thus have for any t,

Eσ∗X [Y ]− E[VσtX (P tx(s))]

= E[Vσ∗X (Px(s))− VσtX (P tx(s))]

= E[E[Vσ∗X (Px(s))− VσtX (P tx(s))|Ht]] = 0,

which proves the statement.

Lemma 17. If φ satisfies Eq. (31), it holds for any T > 1,

T∑
t=1

E[VσtX (P tx(s))− Y t] ≤ δT

+
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ)

Proof. Since Px(s) and P tx(s) are identically distributed
given any history Ht, following a similar argument in
Lem. 14, we have

P (Px(s), P tx(s) ∈ Pt) ≥ 1− δ.∑T
t=1E[VσtX (P tx(s))− Y t] could thus be written as:

T∑
t=1

E[VσtX (P tx(s))− Y t] ≤ δT

+

T∑
t=1

E[VσtX (P tx(s))− Y t|Px(s), P tx(s) ∈ Pt]. (33)

It thus suffices to bound
∑T
t=1 VσtX (P tx(s))− Y t under the

condition that Px(s), P tx(s) ∈ Pt. By Eqs. (25) and (26),

T∑
t=1

VσtX (P tx(s))− Y t

=
∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

+
∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s)).

By the construction Eq. (23) of P (i)
x (s), we have that for

any history Ht = {Si,Xi}t−1
i=1 ,

E[VσtX (V (i−1);P (i)
x (s))− VσtX (V (i);P tx(s))|Ht] = 0.

By Eq. (28), we also have

∑
Vi∈S

T∑
t=1

VσtX (V (i−1);P tx(s))− VσtX (V (i−1);P (i)
x (s))

≤
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ)

The above equation, together with Eq. (33), gives

T∑
t=1

E[VσtX (P tx(s))− Y t] ≤ δT

+
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ).

which proves the statement.

Theorem 4. Given JG,Π, Y K and a prior φ, if φ satisfies
Eq. (31), it holds for any T > 1, the regret of PS-DTR is
bounded by

R(T, φ∗) ≤ ∆(T, 1/T ) + 1,

where function ∆(T, δ) follows the definition in Thm. 3.

Proof. Lems. 16 and 17 together imply that

R(T, φ∗) =

T∑
t=1

E[VσtX (P tx(s))− Y t] ≤ δT

+
∑
Sk∈S

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ)

Following a simplification procedure similar to Thm. 3,

R(T, φ∗) ≤ ∆(T, δ) + δT

Fix δ = 1/T , which completes proof.
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Appendix C. Proofs of Results in Section 4
In this section, we provide proofs for causal bounds on
transition probabilities. Our proofs build on the notion of
counterfactual variables (Pearl, 2000, Ch. 7.1) and axioms
of “composition, effectiveness and reversibility” defined in
(Pearl, 2000, Ch. 7.3.1).

For a SCM M , arbitrary subsets of endogenous variables
X,Y , the potential outcome of Y to intervention do(x),
denoted by Yx(u), is the solution for Y with U = u in
the sub-model Mx. It can be read as the counterfactual
sentence “the value that Y would have obtained in situation
U = u, had X been x.” Statistically, averaging u over
the distribution P (u) leads to the counterfactual variables
Yx. We denote P (Yx) a distribution over counterfactual
variables Yx. We use P (yx) as a shorthand for probabil-
ities P (Yx = y) when the identify of the counterfactual
variables is clear. By definitions, Px(y) = P (yx).

Lemma 5. For a SCM 〈U ,V ,F , P (u)〉, let subsets S ⊆
C ⊆ V . For a topological ordering≺ in G, letS be ordered
by S1 ≺ · · · ≺ Sk. Q[S] is bounded from Q[C] as:

Q[S] ∈
[
A(S, Q[C]), B(S, Q[C])

]
,

where A(S, Q[C]), B(S, Q[C]) are functions defined as
follows. LetW = An(S)G[C]

. IfW = S,

A(S, Q[C]) = B(S, Q[C]) = Q[W ],

where Q[W ] =
∑
c\wQ[C]; otherwise,

A(S, Q[C]) = max
z

Q[W ],

B(S, Q[C]) = min
z

{
Q[W ]−

∑
sk

Q[W ]

}
+B(S \ {Sk}, Q[C]),

where Z = Pa(W )G \ Pa(S)G .

Proof. If W = S, (Tian, 2002, Lemma 10) implies that
Q[S] = Q[W ] =

∑
c\wQ[C]. Therefore, we have

A(S, Q[C]) = B(S, Q[C]) = Q[W ].

IfW 6= S, or equivalently, S ⊂W , by definitions,

Q[S] = P (sv\s),Q[S] = P (wv\w).

LetR = W \ S. By basic probabilistic operations,

P (sv\s) =
∑
r′

P (sv\s, r
′
v\w) =

∑
r′

P (sv\w,r, r
′
v\w)

≥ P (sv\w,r, rv\w)

By the composition axiom,

P (sv\w,r, rv\w) = P (sv\w, rv\w) = P (wv\w).

We thus have
Q[S] ≥ Q[W ].

Since Q[S] is a function of Pa(S)G , it does not depends
on values of Z = Pa(W )G \ Pa(S)G . Taking a maximum
over Z gives

A(S, Q[C]) = max
z

Q[W ].

We now prove Q[S] ≤ B(S, Q[C]) by induction. The base
case W = S is implied by (Tian, 2002, Lemma 10). For
W 6= S, we assume that

Q[S \ {Sk}] ≤ B(S \ {Sk}, Q[C])

By basic probabilistic operations,

P (sv\s)

=
∑
r′

P (sv\s, r
′
v\w)

= P (sv\w,r, rv\w) +
∑
r′ 6=r

P (sv\w,r, r
′
v\w)

≤ P (sv\w,r, rv\w) +
∑
r′ 6=r

P ((s \ {sk})v\w,r, r′v\w)

= P (sv\w, rv\w)− P ((s \ {sk})v\w,r, rv\w)

+ P ((s \ {sk})v\w,r)

= Q[W ]−
∑
sk

Q[W ] +Q[S \ {Sk}].

Since Q[S] and Q[S \ {Sk}] are not functions of Z, taking
a minimum over Z gives

Q[S] ≤ min
z

{
Q[W ]−

∑
sk

Q[W ]

}
+Q[S \ {Sk}].

(34)

Replacing Q[S \{Sk}] with B(S \{Sk}, Q[C]) proves the
statement.

Theorem 5. Given JG,Π, Y K, for any Sk ∈ S, let C be a
c-component in G that contains S̄k. Let Ck = C ∩ S(k)

and let Z = Pa(Ck)G \ Pa(S̄k)G . Px̄k(sk|s̄k \ {sk}) is
bounded in

[
ax̄k,s̄k , bx̄k,s̄k

]
where

ax̄k,s̄k = max
z

{
A(Ck, Q[C])/B(Ck \ {Sk}, Q[C])

}
,

bx̄k,s̄k = min
z

{
B(Ck, Q[C])/B(Ck \ {Sk}, Q[C])

}
.

Proof. Since C contains S̄k and Ck = C ∩ S(k), by the
factorization of Eq. (19),

Px̄k(sk|s̄k \ {sk}) = Q[Ck]/Q[Ck \ {Sk}].
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It immediately follows from Lem. 5 that

Q[Ck]

Q[Ck \ {Sk}]
≥ A(Ck, Q[C])

B(Ck \ {Sk}, Q[C])

Since Px̄k(sk|s̄k \ {sk}) is not a function of Z =
Pa(Ck)G \ Pa(S̄k)G ,

Px̄k(sk|s̄k \ {sk}) ≥ max
z

{
A(Ck, Q[C])

B(Ck \ {Sk}, Q[C])

}
To prove the upper bound, we first write

Q[Ck]

Q[Ck \ {Sk}]
= 1 +

Q[Ck]−Q[Ck \ {Sk}]
Q[Ck \ {Sk}]

By (Tian, 2002, Lemma 10), Q[Ck \ {Sk}] =
∑
sk
Q[Ck].

This implies

Q[Ck]−Q[Ck \ {Sk}] ≤ 0.

This means that Q[Ck]/Q[Ck \ {Sk}] is upper bounded
when Q[Ck \ {Sk}] is taking the maximum values, i.e.,

Q[Ck]

Q[Ck \ {Sk}]
≤ 1 +

Q[Ck]−Q[Ck \ {Sk}]
B(Ck \ {Sk}, Q[C])

LetW = An(Ck)G and let Z̃ = Pa(Ck)G \Pa(W )G . By
Eq. (34),

Q[Ck]

Q[Ck \ {Sk}]
≤ 1 +

minz̃
{
Q[W ]−

∑
sk
Q[W ]

}
B(Ck \ {Sk}, Q[C])

=
B(Ck, Q[C])

B(Ck \ {Sk}, Q[C])

Since Px̄k(sk|s̄k \ {sk}) is not a function of Z =
Pa(Ck)G \ Pa(S̄k)G , taking minimum over z gives

Px̄k(sk|s̄k \ {sk}) ≤ max
z

{
B(Ck, Q[C])

B(Ck \ {Sk}, Q[C])

}
.

Finally, the interventional quantities Q[C] is identifiable
from the observational distribution P (v) following (Tian,
2002, Lem. 7), which completes the proof.

Theorem 6. Given JG,Π, Y K and causal bounds C, fix a
δ ∈ (0, 1). W.p. at least 1− δ, it holds for any T > 1, the
regret of OFU-DTR is bounded by

R(T,M∗) ≤ ∆(T,C, δ) + 2|S|
√
T log(2|S|T/δ),

where function ∆(T,C, δ) is defined as

∑
Sk∈S

min

{
|CSk |T, 17

√
|DS̄k∪X̄k

|T log(|S|T/δ)
}
.

Proof. Let Pc denote the family of parameters Px(s) de-
fined by causal bounds C. Since P (Px(s) ∈ Pc) = 1,

P (Px(s) 6∈ (Pc ∩Pt))

≤ P (Px(s) 6∈ Pc) + P (Px(s) 6∈ Pt)

= P (Px(s) 6= Pt) ≤ δ/(4t2).

The last step follows from Lem. 13. By similar arguments
of Lem. 14, we have

R(T,M∗) ≤
T∑
t=1

Vπt(P
t
x(s))− Y t,

for all t = 1, 2, . . . with probabilities 1− δ/2. By Eqs. (25),
(26) and (29),
T∑
t=1

Vπt(P
t
x(s))− Y t ≤ 2|S|

√
T log(2|S|T/δ)

+
∑
Vi∈S

T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s)).

It is thus sufficient to show that
T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤ min

{
|CSk |T, 17

√
|DS̄k∪X̄k

|T log(|S|T/δ)
}
. (35)

Suppose

T ≤ 172|DS̄k∪X̄k
| log(|S|T/δ). (36)

By the causal bounds CSk ,

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤
∥∥P tx̄k(·|s̄k \ {sk})− Px̄k(·|s̄k \ {sk})

∥∥
1

·max
sk

{
Vπt(V

(i);P tx(s))

}
≤ min

{
|CSk |, 1

}
,

which implies
T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤ min

{
|CSk |T, T

}
= min

{
|CSk |T, (

√
T )2

}
.

By Eq. (36), we have
T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤ min

{
|CSk |T,

√
T ·
√

172|DS̄k∪X̄k
| log(|S|T/δ)

}
= min

{
|CSk |T, 17

√
|DS̄k∪X̄k

|T log(|S|T/δ)
}
,
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which proves Eq. (35). We now consider the case where

T > 172|DS̄k∪X̄k
| log(|S|T/δ). (37)

The definitions of parameter families Pc ∩Pt imply that

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤
∥∥P tx̄k(·|s̄k \ {sk})− Px̄k(·|s̄k \ {sk})

∥∥
1

·max
sk

{
Vπt(V

(i);P tx(s))

}
≤ min

{
|CSk |, 2

√
6|DSk | log(2|S||D(S̄k∪X̄k)\{Sk}|t/δ)

max
{
nt(x̄k, s̄k \ {sk}), 1

} }
By Eq. (27), we have∑
Vi∈S

T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤
∑
Sk∈S

min

{
|CSk |T,

12
√
|DS̄k∪X̄k

|T log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ)
}

(38)

Whenever Eq. (37) holds,

log(2|S||D(S̄k∪X̄k)\{Sk}|T/δ) ≤ 2 log(|S|T/δ).

We thus write Eq. (38) as∑
Vi∈S

T∑
t=1

Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))

≤
∑
Sk∈S

min

{
|CSk |T, 12

√
2|DS̄k∪X̄k

|T log(|S|T/δ)
}

which implies Eq. (35). This completes the proof.

Theorem 7. Given JG,Π, Y K, a prior φ and causal bounds
C, if φ satisfies Eq. (31), it holds for any T > 1, the regret
of PS-DTR is bounded by

R(T, φ) ≤ ∆(T,C, 1/T ) + 1,

where function ∆(T,C, δ) follows the definition in Thm. 6.

Proof. Since φ satisfies Eq. (31), the rejection sampling
ensures that Px(s) and P tx(s) are identically distributed
given any history Ht and causal bounds C. Following a
similar procedure as the proofs for Lems. 16 and 17,

R(T, φ∗) =

T∑
t=1

E[Vπt(P
t
x(s))− Y t] ≤ δT

+
∑
Vi∈S

T∑
t=1

E[Vπt(V
(i−1);P tx(s))− Vπt(V (i−1);P (i)

x (s))].

Following a simplification procedure similar to Thm. 6,

R(T, φ∗) ≤ ∆(T,C, δ) + δT

Fix δ = 1/T , which completes the proof.

Appendix D. Optimistic Single Policy Update
In OFU-DTR, the agent needs to find a near-optimal policy
σtX for an optimistic P tx(s) ∈ Pt. We can formulate this
as an general problem as follows. For any Sk ∈ S, let
Ps̄k\{sk},x̄k denote a convex polytope over Px̄k(sk|s̄k \
{sk}). We are searching for a policy σX and a distribution
Px(s) solving the optimization problem defined as:

max
σX∈Π,Px(s)

VσX
(Px(s))

s.t. Px(s) =
∏
Sk∈S

Px̄k(sk|s̄k \ {sk})

∀Sk ∈ S, Px̄k(·|s̄k \ {sk}) ∈ Ps̄k\{sk},x̄k

∀Sk ∈ S,
∑
sk

Px̄k(sk|s̄k \ {sk}) = 1,

∀Sk ∈ S, Px̄k(sk|s̄k \ {sk}) ∈ [0, 1].

(39)

In general, solving the above polynomial program could
be NP-hard (Håstad, 2001). We will next introduce an
alternative factorization of Px(s) that allows us to solve
the optimization program in Eq. (39) through a series of
local optimization. Consider a soluble ordering ≺ in GσX

defined as follows. Let X be ordered by X1 ≺ · · · ≺ Xn.
We define C1, . . . ,Cn be a partition over S as:

Ci = HXi \ (∪i−1
j=1HX+

j
).

We assume that S ∪X are ordered by ≺ as follows:

C1 ≺ X1 ≺ C2 ≺ X2 ≺ · · · ≺ Cn ≺ Xn.

Since Π is soluble and minimal, Px(s) could be factorized
over ≺ as follows:

Px(s) =

n+1∏
i=2

∏
Sk∈Ci−1

P̃ (sk|p̂ak \ {sk}),

where P̂ak = (HX+
i−1
∪ {Sk}) ∪ {Sj ∈ Ci−1 : Sj ≺ Sk};

P̃ (sk|p̂ak\{sk}) is a mapping from domains of P̂ak\{Sk}
to the probabilistic domains over values of Sk. It is verifiable
that Sk ⊆ Pak. We reformulate the optimization program
in Eq. (39) using the above factorization as follows:

max
σX∈Π,Px(s)

VσX
(Px(s))

s.t. Px(s) =
∏
Sk∈S

P̃ (sk|p̂ak \ {sk})

∀Sk ∈ S, P̃x̄k(·|s̄k−1) ∈ Ps̄k\{sk},x̄k

∀Sk ∈ S,
∑
sk

P̃ (sk|p̂ak \ {sk}) = 1,

∀Sk ∈ S, P̃ (sk|p̂ak \ {sk}) ∈ [0, 1].

(40)
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By constructions, Eq. (40) provides an upper bound for the
solution of Eq. (39). However, since it still considers the con-
fidence set Ps̄k\{sk},x̄k , the approximate given by Eq. (40)
is still reasonably close to the actual optimal Eσ∗X [Y ].

Since Π is soluble, one could solve Eq. (40) through a series
of local optimization following a reverse ordering relative
to ≺. For any Xi ∈X , we define function Ṽ (xi, hXi) as:

Ṽ (xi, hXi) =
∑

v\{hXi ,xi}

Ex[Y |s]
∏
Si∈S

P̃ (si|p̂ai \ {si})∏
X∈X\{Xi}

σX(x|hX)

The optimal decision rule σXi(xi|hXi) is given by

σXi(xi|hXi) = arg max
xi

Ṽ (xi, hXi).

For any Sk ∈ S, we define function Ṽ (p̂ak) as:

Ṽ (p̂ak) =
∑
v\pak

Ex[Y |s]
∏

Si∈S\{Sk}

P̃ (si|p̂ai \ {si})∏
X∈X

σX(x|hX)

The solution P̃ (sk|p̂ak \ {sk}) is given by

P̃ (sk|p̂ak \ {sk}) = arg max
p∈Ps̄k\{sk},x̄k

∑
sk

p(sk)Ṽ (p̂ak).

In the above equations, p(sk) is a vector in the convex poly-
tope Ps̄k\{sk},x̄k . The maximization of p(sk) is a linear
program over Ps̄k\{sk},x̄k , which is solvable using the stan-
dard linear programming algorithms.

Appendix E. Experimental Setup
In this section, we provide details of the setup for exper-
iments presented in Sec. 5. We demonstrate our algo-
rithms on several SCMs, including multi-stage treatment
regimes for lung cancer (Nease Jr & Owens, 1997) and
dyspnoea (Cowell et al., 2006). In all experiments, we
test OFU-DTR algorithm (ofu-dtr) with failure tolerance
δ = 1/T , OFU-DTR with causal bounds (ofu-dtr+) with
causal bounds derived from observational data, PS-DTR
algorithm (ps-dtr) using uninformative dirichlet priors, and
PS-DTR incorporating causal bounds via rejection sam-
pling (ps-dtr+). As a baseline, we also include the sequen-
tial multiple assignment randomized trail (rand), UC-DTR
algorithm (uc-dtr) and causal UC-DTR algorithm (uc-dtr+)
developed in (Zhang & Bareinboim, 2019). To emulate the
unobserved confounding, we generate 2×106 observational
samples using a behavior policy and hide some columns
of covariates. Each experiment lasts for T = 5.5 × 103

episodes. For all algorithms, we measure their average re-
grets R(T,M∗)/T over 100 repetitions.

A

G

I

H

B

C

E

D

F

Figure 4: There causal diagram GLUNG of the lung cancer
staging example.

Variable Description Domain
A CT Result 0, 1, 2
B Mediastinal Metastases 0, 1
C Mediastinoscopy Result 0, 1, 2
D Treatment Death 0, 1
E Mediastinoscopy Death 0, 1
F Life Expectancy 0, 1
G CT? 0, 1
H Mediastinoscopy? 0, 1
I Treatment 0, 1

Table 1: Summary of variables in the Lung cancer staging
example described in Fig. 4.

Lung Cancer Staging

We consider a multi-staged treatment regime for the lung
cancer introduced in (Nease Jr & Owens, 1997), which we
shall refer to as MLUNG.

Consider the case of a patient with a known non-
small-cell carcinoma of the lung. The primary
tumor is 1cm in diameter; a chest x-ray exami-
nation suggests that the tumor does not abut the
chest wall or mediastinum. Additional workup
reveals no evidence of distance metastases. The
preferred treatment in such a situation is thora-
cotomy, followed by lobectomy or pneumonec-
tomy, depending on whether the primary tumor
has metastasized to the hilar lymph nodes.

Of fundamental importance in the decision to per-
form thoracotomy is the likelihood of mediastinal
metastases. If mediastinal metastases are known
to be present, most clinicians would deem thora-
cotomy to be contraindicated: thoracotomy sub-
jects the patient to a risk of death but confers no
health benefit. (Some surgeons attempt to resect
mediastinal metastases that are ipsilateral to the
primary tumor, but this approach remains contro-
versial.) If mediastinal metastases are known to be
absent, thoracotomy offers a substantial survival
advantage, so long as the primary tumor has not
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metastasized to distant organs. There are several
diagnostic tests available to assess any involve-
ment of the mediastinum. For this example, we
shall focus on computed tomography (CT) of the
chest and mediastinoscopy. Our problem involves
three decisions. First, should the patient undergo
a CT scan? Second, given our decision about CT
and any CT results obtained, should the patient
undergo mediastinoscopy? Third, given the re-
sults of any tests that we have decided to perform,
should the patient undergo thoracotomy?

The graphical representation GLUNG of this environment is
shown in Fig. 4. The detailed description of each node is
shown in Table 1. We will consistently use 0 for “Yes”,
1 for “No” and 2 for “N/A”. We will next provide the nu-
merical specification of this environment. For any vari-
able X , we will use x0, x1, x2 to represent realizations
X = 0, X = 1, X = 2 respectively. The values of the
conditional probabilities are given in Table 3; they are for
illustrative purposes only.

To generate the observational data, we sample from MLUNG

following the behavior policies described in Table 3 (i.e., the
conditional probability distributions of G,H, I) and collect
observed outcomes. To emulate the unobserved confound-
ing, we hide columns of variables A,B,D,E, inducing an
observational distribution P (c, f, g, h, i). The causal dia-
gram G compatible with P (c, f, g, h, i) is thus the projec-
tion of GLUNG onto variables C,F,G,H, I , which we show
in Fig. 5a. Hypothetically, the “actual” SCM M∗ conform-
ing to G is the projection of SCM MLUNG onto variables
C,F,G,H, I , following an algorithm described in (Lee &
Bareinboim, 2019). We will use the lift expectancy F as the
primary outcome. The candidate policy space Π is given by
{DG 7→ DH ,D{G,H,C} 7→ DI}. We summarize this learn-
ing problem as the signature JG,Π, F K; Fig. 5b describes its
associated manipulated diagram GσH,I .

The optimal policy σ∗H,I is described as follows:

I : σ∗I (i1|g, h0, c1) = 0,

otherwise σ∗I (i1|g, h, c) = 1.

H : σ∗H(i1|g) = 1.

The expected outcome Eσ∗H,I [F ] of the optimal policy is
equal to 0.5891. The procedure Reduce(G,Π, Y ) finds the
minimal reduction ΠMIN = {D∅ 7→ DH ,D{H,C} 7→ DI}.
OFU-DTR and PS-DTR thus focus on the transition distri-
butions Ph(c). For completeness, we provide parameters for
transition probabilities P (g) and Ph(c) and the immediate
outcome Eh,i[F |c] in Table 4.

Following the analysis in the main draft, we assume that
parameters of the immediate outcome Eh,i[F |c] are pro-
vided. In all experiments, our proposed algorithms ofu-dtr,

H

G

I

C F

(a) G

H

G

I

C F

(b) GσH,I

Figure 5: (a) A causal diagram G induced by the projection
of GLUNG onto C,F,G,H, I; (b) the manipulated diagram
GσH,I with Π = {DG 7→ DH ,D{G,H,C} 7→ DI}.

ofu-dtr+, ps-dtr, ps-dtr+ have access to the causal diagram
G; while other baseline algorithms rand, uc-dtr, uc-dtr+ do
not. Oblivious of the independence between G and C under
do(h), UC-DTR learns parameters of transition probabilities
Ph(c) using the empirical mean of distribution Ph(c|g).

Among these algorithms, rand, uc-dtr, ofu-dtr and ps-dtr
learn from the scratch. Other procedures including ofu-dtr+

and ps-dtr+ derive causal bounds [ah,c, bh,c] over Ph(c)
from P (g, c, f, h, i) and G using the method introduced
in Thm. 5. Oblivious of the causal diagram G, uc-dtr+

derive bounds Ph(c|g) ∈ [ah,g,c, bh,g,c]. The details of
these causal bounds are given in Table 5.

Dyspnoea

We consider a multi-staged treatment regime for the dys-
pnoea introduced in (Cowell et al., 2006), which we shall
refer to as MDYSPNOEA.

Shortness of breath (dyspnoea) may be due to tu-
berculosis, lung cancer, bronchitis, none of them
or more than one of them but its presence or ab-
sence does not discriminate between the diseases.
A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk
factor for both lung cancer and bronchitis. Sup-
pose a doctor must decide whether a patient arriv-
ing at a clinic is to be hospitalized or not. Before
taking the decision the doctor can obtain informa-
tion as to whether the patient has gone to Asia or
suffers from dyspnoea, but other relevant factors
like smoking history or the presence of any dis-
eases are not known. It has also been suggested
that it may be worthwhile to screen the patient by
taking chest X-rays. The results of a chest X-ray
do not discriminate between lung cancer or tuber-
culosis. Proponents of the test say that it should
be carried out at least for the people that have
visited Asia. If a test is carried out, the doctor
has access to the results at the time he determines
whether to hospitalize or not. If the patient suffers
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S A
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ED P Y

Figure 6: There causal diagram GDYSPNOEA of the dyspnoea treatment regime example.

X

A

D

P Y

H

(a) G

X

A

D

P Y

H

(b) GσX,H

Figure 7: (a) A causal diagram G induced by the projection of GDYSPNOEA ontoA,X,D, P,H, Y ; (b) the manipulated diagram
GσX,H with policy space Π = {DA 7→ DX ,D{A,X,D,P} 7→ DH}.

Variable Description Domain
S Smoking 0, 1
A Visit to Asia? 0, 1
T Tuberculosis? 0, 1
B Bronchitis? 0, 1
L Lung cancer? 0, 1
E Either tub. or cancer? 0, 1
X X-ray? 0, 1
D Dyspnoea? 0, 1
P Positive X-ray? 0, 1
H Hospitalize? 0, 1

Table 2: Summary of variables in the dyspnoea treatment
regime example described in Fig. 6.

from tuberculosis or lung cancer, he can be treated
better in hospital, but hospitalization of healthy
individuals should be avoided. Taking X-rays is
harmful in itself and the adverse effects are more
severe if the patient suffers from tuberculosis.

The graphical representation GDYSPNOEA of this environment
is shown in Fig. 6. The detailed description of each node is
shown in Table 2. We will consistently use 0 for “Yes” and 1
for “No”. We will next provide the numerical specification
of this environment. For any variable X , we will use x0, x1

to represent realizations X = 0, X = 1 respectively. The

values of the conditional probabilities are given in Table 6;
they are for illustrative purposes only.

To generate the observational data, we sample from
MDYSPNOEA following the behavior policies described in
Table 2 (i.e., the conditional probability distributions
of X,H) and collect observed outcomes. To emulate
the unobserved confounding, we hide columns of vari-
ables S,B,L, T,E, inducing an observational distribution
P (a, x, h, d, p, y). The causal diagram G compatible with
P (a, x, h, d, p, y) is thus the projection of GDYSPNOEA onto
variables A,X,H,D, P, Y , which we show in Fig. 7a.
Hypothetically, the “actual” SCM M∗ conforming to
G is the projection of model MDYSPNOEA onto variables
A,X,H,D, P, Y , following an algorithm described in (Lee
& Bareinboim, 2019). We will use the utility Y as the
primary outcome. The candidate policy space Π is given
by {DV 7→ DX ,D{A,X,D,P} 7→ DH}. We summarize
this learning problem as the signature JG,Π, F K; Fig. 7b
describes its associated manipulated diagram GσX,H .

The optimal policy σ∗X,H is described as follows:

H : σ∗H(h1|a1, x0, d0, p1) = 1,

otherwise σ∗H(h1|a, x, d, p) = 0.

X : σ∗X(x1|a) = 0.

The expected outcome Eσ∗X,H [Y ] of the optimal policy is
0.789. For completeness, we also provide probabilities for
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the transition distribution P (v), P (d|a) and Px(p|d, a) and
the immediate outcome Ex,h[Y |a, d, p] in Table 7.

Following the analysis in the main draft, we assume that
parameters of the immediate outcome Ex,h[Y |a, d, p] are
provided. We also simplify the optimization procedure and
do not require the learning of P (v), since its parameters
do not affect the optimal policy σ∗X,H . In all experiments,
our proposed algorithms ofu-dtr, ofu-dtr+, ps-dtr, ps-dtr+

have access to the causal diagram G; while other baseline
algorithms rand, uc-dtr, uc-dtr+ do not. Oblivious of the
causal relationships encoded in G, UC-DTR treat variables
D,P en bloc and focuses on learning the transition prob-
abilities Px(d, p|v). On the other hand, ofu-dtr, ofu-dtr+,
ps-dtr, ps-dtr+ utilize the factorization

Px(d, p|v) = P (d|a)Px(p|d, a),

and learn parameters of P (d|a) and Px(p|d, a) separately.

Among these algorithms, rand, uc-dtr, ofu-dtr and ps-dtr
learn from the scratch; while ofu-dtr+, ps-dtr+ and uc-dtr+

also utilize the observational data. Since P (d|a) is identifi-
able from P (a, x, h, d, p, y), ofu-dtr+ and ps-dtr+ estimate
parameters of P (d|a) from the observational data using its
empirical means. Furthermore, ofu-dtr+ and ps-dtr+ com-
pute the causal bounds [ax,a,d(p), bx,a,d(p)] over Px(p|d, a)
from the empirical estimates of P (a, x, h, d, p, y). Obliv-
ious of the causal diagram G, uc-dtr+ derive bounds
Px(d, p|a) ∈ [ax,a(d, p), bx,a(d, p)]. The details of these
causal bounds are given in Table 8.
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A: P (a0|b0, g0) = 0.2841 P (a1|b0, g0) = 0.5005
P (a0|b0, g1) = 0.4862 P (a1|b0, g1) = 0.4792
P (a0|b1, g0) = 0.4680 P (a1|b1, g0) = 0.4077
P (a0|b1, g1) = 0.0330 P (a1|b1, g1) = 0.6757

B: P (b0) = 0.5417 P (b1) = 0.4583
C: P (c0|b0, h0) = 0.4103 P (c1|b0, h0) = 0.1062

P (c0|b0, h1) = 0.3080 P (c1|b0, h1) = 0.4666
P (c0|b1, h0) = 0.3997 P (c1|b1, h0) = 0.5083
P (c0|b1, h1) = 0.3017 P (c1|b1, h1) = 0.3389

D: P (d0|i0) = 0.4328 P (d0|i1) = 0.2731
E: P (e1|h0) = 0.1473 P (e1|h1) = 0.8849
F : P (f1|b0, d0, e0, i0) = 0.1491 P (f1|b0, d0, e0, i1) = 0.9693

P (f1|b0, d0, e1, i0) = 0.0177 P (f1|b0, d0, e1, i1) = 0.2382
P (f1|b0, d1, e0, i0) = 0.8229 P (f1|b0, d1, e0, i1) = 0.9601
P (f1|b0, d1, e1, i0) = 0.2460 P (f1|b0, d1, e1, i1) = 0.8257
P (f1|b1, d0, e0, i0) = 0.0937 P (f1|b1, d0, e0, i1) = 0.2567
P (f1|b1, d0, e1, i0) = 0.5303 P (f1|b1, d0, e1, i1) = 0.1900
P (f1|b1, d1, e0, i0) = 0.4400 P (f1|b1, d1, e0, i1) = 0.3264
P (f1|b1, d1, e1, i0) = 0.6326 P (f1|b1, d1, e1, i1) = 0.3320

G: P (g0) = 0.2546 P (g1) = 0.7454
H: P (h1|a0, g0) = 0.9456 P (h1|a0, g1) = 0.4239

P (h1|a1, g0) = 0.7273 P (h1|a1, g1) = 0.6931
P (h1|a2, g0) = 0.4035 P (h1|a2, g1) = 0.4228

I: P (i0|a, c0, e0, g0, h0) = 0.1576 P (i0|a, c0, e0, g0, h1) = 0.8491
P (i0|a, c0, e0, g1, h0) = 0.4218 P (i0|a, c0, e0, g1, h1) = 0.6555
P (i0|a, c0, e1, g0, h0) = 0.4854 P (i0|a, c0, e1, g0, h1) = 0.7577
P (i0|a, c0, e1, g1, h0) = 0.9595 P (i0|a, c0, e1, g1, h1) = 0.0318
P (i0|a, c1, e0, g0, h0) = 0.9706 P (i0|a, c1, e0, g0, h1) = 0.9340
P (i0|a, c1, e0, g1, h0) = 0.9157 P (i0|a, c1, e0, g1, h1) = 0.1712
P (i0|a, c1, e1, g0, h0) = 0.8003 P (i0|a, c1, e1, g0, h1) = 0.7431
P (i0|a, c1, e1, g1, h0) = 0.6557 P (i0|a, c1, e1, g1, h1) = 0.2769
P (i0|a, c2, e0, g0, h0) = 0.9572 P (i0|a, c2, e0, g0, h1) = 0.6787
P (i0|a, c2, e0, g1, h0) = 0.7922 P (i0|a, c2, e0, g1, h1) = 0.7060
P (i0|a, c2, e1, g0, h0) = 0.1419 P (i0|a, c2, e1, g0, h1) = 0.3922
P (i0|a, c2, e1, g1, h0) = 0.0357 P (i0|a, c2, e1, g1, h1) = 0.0462

Table 3: Conditional probability distributions for the Lung cancer staging example described in Fig. 4.

G: P (g0) = 0.2546 P (g1) = 0.7454
C: Ph0

(c0) = 0.4055 Ph1
(c0) = 0.3051

Ph0(c1) = 0.2904 Ph1(c1) = 0.4081
Ph0(c2) = 0.3041 Ph1(c2) = 0.2868

F : Eh0,i0 [F |c0] = 0.3559 Eh1,i0 [F |c0] = 0.3759
Eh0,i0 [F |c1] = 0.4546 Eh1,i0 [F |c1] = 0.3707
Eh0,i0 [F |c2] = 0.2677 Eh1,i0 [F |c2] = 0.3845
Eh0,i1 [F |c0] = 0.5406 Eh1,i1 [F |c0] = 0.5919
Eh0,i1 [F |c1] = 0.3854 Eh1,i1 [F |c1] = 0.6303
Eh0,i1 [F |c2] = 0.6794 Eh1,i1 [F |c2] = 0.5276

Table 4: Transition distributions and the immediate outcome for the learning problem of the Lung cancer staging example.
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Ph(c): ah0(c0) = 0.3045 bh0(c0) = 0.5530
ah1(c0) = 0.1292 bh1(c0) = 0.7061
ah0

(c1) = 0.2252 bh0
(c1) = 0.4737

ah1
(c1) = 0.1743 bh1

(c1) = 0.7513
ah0

(c2) = 0.2218 bh0
(c2) = 0.4703

ah1(c2) = 0.1196 bh1(c2) = 0.6965
Ph(c|g): ah0,g0(c0) = 0.3045 bh0,g0(c0) = 0.5530

ah0,g1
(c0) = 0.2338 bh0,g1

(c0) = 0.6568
ah1,g0

(c0) = 0.0759 bh1,g0
(c0) = 0.8274

ah1,g1
(c0) = 0.1292 bh1,g1

(c0) = 0.7061
ah0,g0(c1) = 0.2252 bh0,g0(c1) = 0.4737
ah0,g1(c1) = 0.1728 bh0,g1(c1) = 0.5959
ah1,g0

(c1) = 0.1036 bh1,g0
(c1) = 0.8551

ah1,g1
(c1) = 0.1743 bh1,g1

(c1) = 0.7513
ah0,g0

(c2) = 0.2218 bh0,g0
(c2) = 0.4703

ah0,g1(c2) = 0.1703 bh0,g1(c2) = 0.5934
ah1,g0(c2) = 0.0690 bh1,g0(c2) = 0.8205
ah1,g1

(c2) = 0.1196 bh1,g1
(c2) = 0.6965

Table 5: Causal bounds for the transition probabilities Ph(c) ∈ [ah(c), bh(c)] and Ph(c|g) ∈ [ah,g(c), bh,g(c)] in the Lung
cancer staging example.

A: P (a0) = 0.8147 P (a1) = 0.1853
B: P (b0|s0) = 0.1270 P (b0|s1) = 0.9134
D: P (d0|b0, e0) = 0.6324 P (d0|b0, e1) = 0.2785

P (d0|b1, e0) = 0.0975 P (d0|b1, e1) = 0.5469
E: P (e0|l0, i0) = 0.9575 P (e0|l0, i1) = 0.1576

P (e0|l1, i0) = 0.9649 P (e0|l1, i1) = 0.9706
L: P (l0|s0) = 0.9572 P (l0|s1) = 0.4854
S: P (s0) = 0.9058 P (s1) = 0.0942
T : P (t0|a0) = 0.8003 P (t0|a1) = 0.1419
P : P (p0|e0, x0) = 0.4218 P (p0|e0, x1) = 0.7922

P (p0|e1, x0) = 0.9157 P (p0|e1, x1) = 0.9595
X: P (x0|s0, a0) = 0.6557 P (x0|s0, a1) = 0.0357

P (x0|s1, a0) = 0.6557 P (x0|s1, a1) = 0.0357
H: P (h0|s0, a0) = 0.0971 P (h0|s0, a1) = 0.6948

P (h0|s1, a0) = 0.8235 P (h0|s1, a1) = 0.3171
Y : P (y0|l0, t0, x0, h0) = 0.8491 P (y0|l0, t0, x0, h1) = 0.6787

P (y0|l0, t0, x1, h0) = 0.9340 P (y0|l0, t0, x1, h1) = 0.7577
P (y0|l0, t1, x0, h0) = 0.7431 P (y0|l0, t1, x0, h1) = 0.6555
P (y0|l0, t1, x1, h0) = 0.3922 P (y0|l0, t1, x1, h1) = 0.1712
P (y0|l1, t0, x0, h0) = 0.7060 P (y0|l1, t0, x0, h1) = 0.2769
P (y0|l1, t0, x1, h0) = 0.0318 P (y0|l1, t0, x1, h1) = 0.0462
P (y0|l1, t1, x0, h0) = 0.0971 P (y0|l1, t1, x0, h1) = 0.6948
P (y0|l1, t1, x1, h0) = 0.8235 P (y0|l1, t1, x1, h1) = 0.3171

Table 6: Conditional probability distributions for the dyspnoea treatment example described in Fig. 4.
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D: P (d0|a0) = 0.2633 P (d0|a1) = 0.4151
P : Px0

(p0|d0, a0) = 0.5979 Px0
(p0|d0, a1) = 0.8206

Px1
(p0|d0, a0) = 0.8518 Px1

(p0|d0, a1) = 0.9273
Px0(p0|d1, a0) = 0.4846 Px0(p0|d1, a1) = 0.7028
Px1(p0|d1, a0) = 0.8135 Px1(p0|d1, a1) = 0.8874

Y : Ex0,h0
[Y |a0, d0, p0] = 0.7745 Ex1,h0

[Y |a0, d0, p0] = 0.6529
Ex0,h0

[Y |a1, d0, p0] = 0.7220 Ex1,h0
[Y |a1, d0, p0] = 0.4447

Ex0,h0
[Y |a0, d1, p0] = 0.8084 Ex1,h0

[Y |a0, d1, p0] = 0.7990
Ex0,h0 [Y |a1, d1, p0] = 0.7236 Ex1,h0 [Y |a1, d1, p0] = 0.5041
Ex0,h0 [Y |a0, d0, p1] = 0.7906 Ex1,h0 [Y |a0, d0, p0] = 0.7410
Ex0,h0

[Y |a1, d0, p1] = 0.6150 Ex1,h0
[Y |a1, d0, p1] = 0.5552

Ex0,h0
[Y |a0, d1, p1] = 0.8230 Ex1,h0

[Y |a0, d1, p1] = 0.8453
Ex0,h0

[Y |a1, d1, p1] = 0.6837 Ex1,h0
[Y |a1, d1, p1] = 0.6171

Ex0,h1 [Y |a0, d0, p0] = 0.6371 Ex1,h1 [Y |a0, d0, p0] = 0.4717
Ex0,h1 [Y |a1, d0, p0] = 0.6554 Ex1,h1 [Y |a1, d0, p0] = 0.2109
Ex0,h1

[Y |a0, d1, p0] = 0.6530 Ex1,h1
[Y |a0, d1, p0] = 0.6219

Ex0,h1
[Y |a1, d1, p0] = 0.6569 Ex1,h1

[Y |a1, d1, p0] = 0.2731
Ex0,h1

[Y |a0, d0, p1] = 0.6179 Ex1,h1
[Y |a0, d0, p0] = 0.5755

Ex0,h1 [Y |a1, d0, p1] = 0.6545 Ex1,h1 [Y |a1, d0, p1] = 0.2919
Ex0,h1 [Y |a0, d1, p1] = 0.6528 Ex1,h1 [Y |a0, d1, p1] = 0.6731
Ex0,h1

[Y |a1, d1, p1] = 0.6600 Ex1,h1
[Y |a1, d1, p1] = 0.3762

Table 7: Transition distributions and the immediate outcome for the learning problem of the dyspnoea treatment example.
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Px(p|d, a): ax0,a0,d0
(p0) = 0.3920 bx0,a0,d0

(p0) = 0.7363
ax1,a0,d0

(p0) = 0.2933 bx1,a0,d0
(p0) = 0.9490

ax0,a1,d0
(p0) = 0.0293 bx0,a1,d0

(p0) = 0.9936
ax1,a1,d0(p0) = 0.8942 bx1,a1,d0(p0) = 0.9299
ax0,a0,d1(p0) = 0.3178 bx0,a0,d1(p0) = 0.6620
ax1,a0,d1

(p0) = 0.2800 bx1,a0,d1
(p0) = 0.9358

ax0,a1,d1
(p0) = 0.0251 bx0,a1,d1

(p0) = 0.9894
ax1,a1,d1

(p0) = 0.8557 bx1,a1,d1
(p0) = 0.8914

ax0,a0,d0(p1) = 0.2637 bx0,a0,d0(p1) = 0.6080
ax1,a0,d0(p1) = 0.0510 bx1,a0,d0(p1) = 0.7067
ax0,a1,d0

(p1) = 0.0064 bx0,a1,d0
(p1) = 0.9707

ax1,a1,d0
(p1) = 0.0701 bx1,a1,d0

(p1) = 0.1058
ax0,a0,d1

(p1) = 0.3380 bx0,a0,d1
(p1) = 0.6822

ax1,a0,d1(p1) = 0.0642 bx1,a0,d1(p1) = 0.7200
ax0,a1,d1(p1) = 0.0106 bx0,a1,d1(p1) = 0.9749
ax1,a1,d1

(p1) = 0.1086 bx1,a1,d1
(p1) = 0.1443

Px(d, p|a): ax0,a0
(d0, p0) = 0.1032 bx0,a0

(d0, p0) = 0.4475
ax1,a0

(d0, p0) = 0.0772 bx1,a0
(d0, p0) = 0.7330

ax0,a1(d0, p0) = 0.0122 bx0,a1(d0, p0) = 0.9765
ax1,a1(d0, p0) = 0.3712 bx1,a1(d0, p0) = 0.4069
ax0,a0

(d1, p0) = 0.2341 bx0,a0
(d1, p0) = 0.5783

ax1,a0
(d1, p0) = 0.2063 bx1,a0

(d1, p0) = 0.8620
ax0,a1

(d1, p0) = 0.0147 bx0,a1
(d1, p0) = 0.9790

ax1,a1(d1, p0) = 0.5005 bx1,a1(d1, p0) = 0.5362
ax0,a0(d0, p1) = 0.0694 bx0,a0(d0, p1) = 0.4137
ax1,a0

(d0, p1) = 0.0134 bx1,a0
(d0, p1) = 0.6692

ax0,a1
(d0, p1) = 0.0027 bx0,a1

(d0, p1) = 0.9669
ax1,a1

(d0, p1) = 0.0027 bx1,a1
(d0, p1) = 0.0648

ax0,a0(d1, p1) = 0.2490 bx0,a0(d1, p1) = 0.5932
ax1,a0(d1, p1) = 0.0473 bx1,a0(d1, p1) = 0.7030
ax0,a1

(d1, p1) = 0.0062 bx0,a1
(d1, p1) = 0.9705

ax1,a1
(d1, p1) = 0.0635 bx1,a1

(d1, p1) = 0.0992

Table 8: Causal bounds for the transition probabilities Px(p|d, a) ∈ [ax,a,d(p), bx,a,d(p)] and Px(d, p|a) ∈
[ax,a(d, p), bx,a(d, p)] in the dyspnoea treatment example.


