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Abstract

A dynamic treatment regime (DTR) consists of a
sequence of decision rules, one per stage of inter-
vention, that dictates how to determine the treat-
ment assignment to patients based on evolving
treatments and covariates’ history. These regimes
are particularly effective for managing chronic
disorders and is arguably one of the critical in-
gredients underlying more personalized decision-
making systems. All reinforcement learning algo-
rithms for finding the optimal DTR in online set-
tings will suffer Q(+/|Dxyus|T) regret on some
environments, where 7" is the number of exper-
iments and D x g is the domains of the treat-
ments X and covariates S. This implies that
T = Q(|Dxus|) trials will be required to gen-
erate an optimal DTR. In many applications, the
domains of X and S could be enormous, which
means that the time required to ensure appropri-
ate learning may be unattainable. We show that,
if the causal diagram of the underlying environ-
ment is provided, one could achieve regret that
is exponentially smaller than D xg. In particu-
lar, we develop two online algorithms that satisfy
such regret bounds by exploiting the causal struc-
ture underlying the DTR; one is the based on the
principle of optimism in the face of uncertainty
(OFU-DTR), and the other uses the posterior sam-
pling learning (PS-DTR). Finally, we introduce
efficient methods to accelerate these online learn-
ing procedures by leveraging the abundant, yet
biased observational (non-experimental) data.
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1. Introduction

In medical practice, a patient typically has to be treated at
multiple stages; a physician sequentially assigns each treat-
ment, repeatedly tailored to the patient’s time-varying, dy-
namic state (e.g., infection’s level, different diagnostic tests).
Dynamic treatment regimes (DTRs, Murphy 2003) provide
an attractive framework of personalized treatments in longi-
tudinal settings. Operationally, a DTR consists of decision
rules that dictate what treatment to provide at each stage,
given the patient’s evolving conditions and treatments’ his-
tory. These decision rules are alternatively known as adap-
tive treatment strategies (Lavori & Dawson, 2000; 2008;
Murphy, 2005a; Thall et al., 2000; 2002) or treatment poli-
cies (Lunceford et al., 2002; Wahed & Tsiatis, 2004; 2006).

Learning the optimal dynamic treatment regime concerns
with finding a sequence of decision rules ox over a finite
set of treatments X that maximizes a primary outcome
Y. The main challenge is that since the underlying system
dynamics are often unknown, it’s not immediate how to
infer the consequences of executing the policy do(ox ), i.e.,
the causal effect E,, . [Y]. Most of the current work in the
causal inference literature focus on the off-policy (offline)
learning setting, where one tries to identify the causal effect
from the combination of static data and qualitative assump-
tions about the data-generating mechanisms. Several criteria
and algorithms have been developed (Pearl, 2000; Spirtes
et al., 2001; Bareinboim & Pearl, 2016). For instance, a
criterion called the sequential backdoor (Pearl & Robins,
1995) allows one to determine whether causal effects can be
obtained by adjustment. This condition is also referred to
as sequential ignorability (Rubin, 1978; Murphy, 2003). To
ensure it, one could randomly assign values of treatments at
each stage of the intervention and observe the subsequent
outcomes; a popular strategy of this kind is known as the
sequential multiple assignment randomized trail (SMART,
Murphy 2005a). Whenever the backdoor condition can
be ascertained, a number of efficient off-policy estimation
procedures exist, including popular methods based on the
propensity score (Rosenbaum & Rubin, 1983), inverse prob-
ability of treatment weighting (Murphy et al., 2001; Robins
et al., 2008), and Q-learning (Murphy, 2005b).

More recently, (Zhang & Bareinboim, 2019) introduced
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the first online reinforcement learning (RL, Sutton & Barto
1998) algorithm for finding the optimal DTR. Compared
with the off-policy learning, an online learning algorithm
learns through sequential, adaptive experimentation. It re-
peatedly adjusts the current decision rules based on the past
outcomes; the updated decision rules are deployed to gen-
erate new observations. The goal is to identify the optimal
treatment regime with low regret, i.e., the least amount of
experimentation. Settings that allow some amount of on-
line experimentation are increasingly popular, including,
for instance, mobile and internet applications where contin-
uous monitoring and just-in-time intervention are largely
available (Chakraborty & Moodie, 2013)). For DTRs with
treatments X and covariates’ history .S, the strongest results
of this kind establish O(y/]Dxus|T)" for a particular algo-
rithm introduced in (Zhang & Bareinboim, 2019), which is
close to the lower bound Q(1/|D xus|T). However, when
the cardinality of D x g is huge, even this level of regret
(to guarantee appropriate learning) is somewhat unattain-
able in some critical settings, which suggests the need for
investigating alternative and reasonable assumptions.

In many applications, one often has access to some causal
knowledge about the underlying environment, represented
in the form of directed acyclic causal diagrams (Pearl,
2000). When the causal diagram is sparse, e.g., some vari-
ables in S are affected by a small subset of treatments X,
the dimensionality of the learning problem could be reduced
exponentially. There are RL algorithms exploiting the struc-
tural information in Markov decision processes (MDPs),
where a finite state is statistically sufficient to summarize
the treatments and covariates’ history (Kearns & Koller,
1999; Osband & Van Roy, 2014). Unfortunately, the under-
lying environment of DTRs is often non-Markovian, and
involves non-trivial causal relationships. For instance, in a
treatment regime where patients receive multiple courses
of chemotherapy, the initial treatment could affect the final
remission via some unknown mechanisms, which are not
summarizable by a prespecified state (Wang et al., 2012).

In this paper, we study the online learning of optimal dy-
namic treatment regimes provided with the causal diagram
of the underlying, unknown environment. More specifically,
our contributions are as follows. (1) We propose an efficient
procedure (Alg. 1) reducing the dimensionality of candidate
policy space by exploiting the functional and independence
restrictions encoded in the causal diagram. (2) We deve-
lope two novel online reinforcement learning algorithms
(Algs. 2 and 3) for identifying the optimal DTR, leverag-
ing the causal diagram, and that consistently dominate the
state-of-art methods in terms of the performance. (3) We
introduce systematic methods to accelerate the proposed
algorithms by extrapolating knowledge from the abundant,

'f = O(g) if and only if Ik such that f = O(glog”®(g)).

yet biased observational (non-experimental) data (Thms. 6
and 7). Our results are validated on multi-stage treatments
regimes for lung cancer and dyspnoea. Given the space con-
straints, all proofs are provided in (Zhang & Bareinboim,
2020, Appendices A-C).

1.1. Preliminaries

In this section, we introduce the basic notations and defi-
nitions used throughout the paper. We use capital letters
to denote variables (X) and small letters for their values
(x). Let D x represent the domain of X and |D x| its dimen-
sion. We consistently use the abbreviation P(z) to represent
the probabilities P(X = x). X (® stands for a sequence
{X1,..., Xs} (0if i < 1). Finally, I{z—_y is an indicator
function that returns 1 if Z = z holds true; otherwise 0.

The basic semantical framework of our analysis rest on struc-
tural causal models (SCMs) (Pearl, 2000, Ch. 7). A SCM
M is atuple (U,V,F, P(u)) where V is a set of endoge-
nous (often observed) variables and U is a set of exogenous
(unobserved) variables. F is a set of structural functions
where fyy € F decides values of an endogenous variable
V' € V taking as argument a combination of other variables.
Thatis, V < fy(Pay,Uy), Pay C V, Uy C U. Values
of U are drawn from a distribution P(w), which induces
an observational distribution P(v) over V. An intervention
on a subset X C V, denoted by do(x), is an operation
where values of X are set to constants «, regardless of
how they were ordinarily determined through the functions
{fx : VX € X}. Fora SCM M, let M,, be a submodel of
M induced by do(x). The interventional distribution Py(s)
is the distribution over S C V in submodel M.

Each SCM M is associated with a directed acyclic graph
(DAG) G (e.g., see Fig. 1a), called the causal diagram, where
nodes correspond to endogenous variables V', solid arrows
represent arguments of each function fi,. A bi-directed
arrow between nodes V; and V; indicates an unobserved
confounder (UC) affecting both V; and V}, i.e., Uy, NUy, #*
(). We will use the graph-theoretic family abbreviations, e.g.
An(X)g, De(X)g, Pa(X)g stand for the set of ancestors,
descendants and parents of X in G (including X'). We omit
the subscript G when it is obvious. A path from a node X to
anode Y in G is a sequence of edges which does not include
a particular node more than once. Two sets of nodes X, Y
are said to be d-separated by a third set Z in a DAG G,
denoted by (X 1l Y'|Z)g, if every edge path from nodes
in one set to nodes in another are “blocked”. The criterion
of blockage follows (Pearl, 2000, Def. 1.2.3).

In a causal diagram G, variables V' could be partitioned
into disjoint groups, called confounded components (c-
component), by assigning two variables to the same group
if and only if they are connected by a path composed solely
of bi-directed arrows (Tian & Pearl, 2002). The latent pro-
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jection Pro3j(g, S) is an algorithm that induces a causal
diagram from G over a subset S C V while preserving
topological relationships among S (Tian, 2002, Def. 5). For
example, in Fig. la, Proj(G, { X2, Y'}) returns a subgraph
X5 —Y; X;,51, X5 belong to the same c-component due
to the bi-directed path X; < 51 < Xo.

2. Optimal Dynamic Treatment Regimes

We start the section by formalizing DTRs in the semantics
of SCMs. We consider the sequential decision-making prob-
lem in a SCM M* = (U,V,F, P(u)), where an agent
(e.g., a physician) determines the values of a set of treat-
ments X C V with the goal of maximizing a primary
outcome Y € V. Domains of V' are discrete and finite.

A dynamic treatment regime (hereafter, policy) ox is a
sequence of decision rules {ox : VX € X}. Eachox isa
mapping from the values of the treatments and covariates’
history Hx C V to the domain of probability distributions
over X, denoted by ox (r|hx); we write Hx+ = Hx U
X. An intervention do(ox ) following a policy ox is an
operation that determines values of each X € X following
the decision rule o, regardless of its original function
fx. Let M7, be the manipulated SCM of M* induced by
do(o x ). We define the interventional distribution P, (v)
as the distribution over V in the manipulated model M} <

v) =Y Pu) [ Pelpay,uv) [T ox(lhx).

Vgx Xex
The collection of all possible o x defines a policy space 11,
which we denote by {Dpy, — Dx : VX € X}. We are in
search of an optimal policy 0% maximizing the expected
outcome E,, [Y],i.e., 0% = argmax, .y Eox [Y].

Let G denote the causal diagram associated with M* and
let G be a subgraph of G by removing incoming arrows
to X. We denote by G, a manipulated diagram obtained
from G and II by adding arrows from nodes in Hx to X
in the subgraph G For example, Fig. 1b shows a manip-
ulated graph G, where treatments are highlighted in red
and input arrows in blue. We assume that G, does not
include cycles. A DTR agent decides treatments following
a topological ordering < in G, . It does not forget pre-
vious treatments or information it once had, i.e., for any
X; < X, HX+ C Hx;. Such a property, called perfect
recall (Koller & Friedman, 2009, Def. 23.5), ensures the
following independence relationships among decision rules.
Definition 1 (Solubility). A policy space II is soluble w.r.t.
G and Y if there exists a topological ordering < on G,
(called the soluble ordering) such that whenever X; < X,
(YNDe(X;) IL ox,|H+)g,, . Where o, is a new parent
node added to X;. ’

For instance, the policy space II described in Fig. 1b is

o o,

T [ [0 b

St

(a) g (b) go'xl,x2 (C) gE’Xl,X2 (d) go'X2

Figure 1: (a) A causal diagram G; (b) a manipulated diagram
Gox With a policy space Il = {Dy + Dx,, Dyg, x,} =
Dx,}; (c) adiagram G5 with areduction I ={Dg+—
Dx,,Dx, = Dx,}; (c) a manipulated diagram G, with
the minimal reduction Iy = {Dy — Dx, }.

soluble relative to X; < Sy < X9 < Y since (Y 1L
ox, [{X1, S, XQ})ggXl,}% . When II is soluble and M* is
known, there exist efficient dynamic programming planners
(Lauritzen & Nilsson, 2001) that solve for the optimal policy
0% . Throughout this paper, we assume the parameters of
M* are unknown. Only the causal diagram G, the policy
space I, and the primary outcome Y are provided to the
learner, which we summarize as a signature [G,II, Y].

2.1. Reducing the Policy Space

In this section, we simplify the complexity of the learning
problem by determining and exploiting irrelevant treatments
and information for the candidate policies. We begin by
defining the equivalence relationships among policy spaces.
Definition 2. Given [G,II,Y], a policy space II is
equivalent to II, if for any SCM M conforming to G,
max&X ell EJWE'X [Y} = MaXs eIl EMax [Y]

In words, two policy spaces are equivalent if they induce the
same optimal performance. It is thus sufficient to optimize
over a policy space that is in the same equivalence class of
II. We will introduce graphical conditions that identify such
an equivalence class. Among equivalent policy spaces, we
consistently prefer ones with smaller cardinality |IT].

Definition 3. Given [G,II, Y], treatments X C X are
irrelevant if X = X \ (X N An(Y))g, . -
Intuitively, treatments X are irrelevant if they has no causal
(functional) effect on the primary outcome Y. Therefore,
the agent could choose not to intervene on X without com-
promising its optimal performance. Let IT \ X denote a
partial policy space obtained from II by removing treat-
ments X, i.e., {Dp, +— Dx : VX ¢ X}. The following
proposition confirms the intuition of irrelevant treatments.

Lemma 1. Given [G, 1L Y], 1T \ X is equivalent to 1 if
treatments X are irrelevant.

We will also utilize the notion of irrelevant evidences intro-
duced in (Lauritzen & Nilsson, 2001, Def. 8).
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Definition 4. Given [G, 11, Y], evidences S C Hy for
X € X, d~en0ted by~ S +— X, are irrelevant if (Y N
De(X) 1L S|Hx+ \S)gox.

Def. 4 states that evidences S — X have no value of in-
formation on the outcome Y if the remaining evidences
are known. Let IT\ {S — X} denote a policy space ob-
tained from II by removing S from input space of ox, i.e,
{Dp s — Dx tUIIN{X}). Our next result corroborates
the definition of irrelevant evidence.

Lemma 2. Given [G,IL, Y], II'\ {S — XY} is equivalent
to I1 if evidences S — X are irrelevant.

Lems. 1 and 2 allow us to search through the equivalence
class of 1I with reduced cardinality.

Definition 5. Given [G, I, Y], a policy space IT is a reduc-
tion of IT if it is obtainable from II by successively removing
irrelevant evidences or treatments.

Lemma 3. Given [G,I1,Y], a reduction II of the policy
space 11 is soluble if 11 is soluble.

Lem. 3 shows that IT satisfies some basic causal constraints
of I1, i.e., the solubility is preserved under reduction. In gen-
eral, computational and sample complexities of the learning
problem depend on cardinalities of candidate policies. Nat-
urally, we want to solve for the optimal policy in a function
space that is reduced as much as possible.

Definition 6. Given [G, I, Y], a reduction ITy,y of II is
minimal if it has no irrelevant evidence and treatment.

One simple algorithm for obtaining a minimal reduction
II,;n 1 to remove irrelevant treatments and evidences itera-
tively from II until no more reduction could be found. An
obvious question is whether the ordering of removal affects
the final output, i.e., there exist multiple minimal reductions.
Fortunately, the following theorem implies the opposite.

Theorem 1. Given [G, 11, Y], there exists a unique minimal
reduction Iy of the policy space 11

We describe in Alg. 1 the Reduce algorithm that efficiently
finds the minimal reduction. More specifically, let < be a
soluble ordering in G, , . Reduce examines the treatments
in X following a reverse ordering regarding <. For each
treatment X;, it iteratively reduce the policy space by re-
moving irrelevant evidences. Finally, it obtains the minimal
reduction by removing all irrelevant treatments.

Theorem 2. Given [G,11,Y], Reduce returns the minimal
reduction Iy of a soluble policy space I1.

As an example, we apply Reduce on the policy space II
described in Fig. 1b. Since (Y 1 S;|X;, Xg)gaxl’xg ,
evidence S7 — X3 is irrelevant. Removing Sp leads to a re-
duction IT = IT\ {.S; — X5} described in Fig. lc. Similarly,

Algorithm 1 Reduce

1: Input: Signature [G,II, Y].
2: Let < be a soluble ordering in G, ,, and let treatments
in X be ordered by X7 < --- < X,,.
foralli=n,...,1do

for all irrelevant evidence S +— X; in 11 do

LetII =11\ {S — X;}.

end for
end for
Return IT = T\ X where X are irrelevant treatments.

P RDINER

we could remove X; — X5 since (Y 1L X1|X2)G&x1,x2 .
Treatment X is now irrelevant since there exists no path
from X; to Y. Removing X gives the minimal reduction
IIyn described in Fig. 1d. Suppose policies in II are de-
terministic. The cardinality of IT is [Dx, [|D¢x, x,, 5.1
while |TTy;y| could be much smaller, equating to |Dx, |.

3. Online Learning Algorithms

The goal of this section is to design online RL algorithms
that find the optimal DTR 0% in an unknown SCM M*
based solely on the information summarized in [G, IT, Y].

An online learning algorithm learns the underlying system
dynamics of M* through repeated episodes of interactions
t = 1,...,T. Ateach episode ¢, the agent picks a pol-
icy oy, assigns treatments do(X*) following o'y, and re-
ceives subsequent outcome Y'¢. The cumulative regret up to
episode T is defined as R(T', M*) = Zthl (Egy [Y]=YT),
i.e, the loss due to the fact that the algorithm does not always
follow the optimal policy 0. A desirable asymptotic prop-
erty is to have limp_, oo R(T, M*)/T = 0, meaning that
the agent eventually converges and finds the optimal policy
0% . We also consider the Bayesian settings where the actual
SCM M* is sampled from a distribution ¢* over a set of
candidate SCMs in M. The Bayesian regret up to episode T’
is defined as R(T, ¢*) = E[R(T, M*)|M* ~ ¢*]. We will
assess and compare the performance of online algorithms in
terms of the cumulative and Bayesian regret.

With a slight abuse of notation, we denote by Iy =
{Duy — Dx : VX € X}, the minimal reduction ob-
tained from Reduce(G,I1,Y). Let S = (Uxex Hx) \ X.
For any policy ox € Iy, Esy [Y] could be written as

Eox [Y] =Y Ea[Y[s]Pu(s) ] mx(xlhx). (D

XeXx

Among quantities in the above equation, only transitional
probabilities Py (s) and immediate outcome E,[Y |s] are
unknown. It thus suffices to learn P, (s) and E,[Y]s] to
identify the optimal policy. In the remainder of this paper,
we will focus on the projection Gy;y from G over variables
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(b) g”xl,XQ © g[S1,52]

Figure 2: (a) A causal diagram G; (b) the manipulated
diagram G, withIl = {Ds, = Dx,, Dysy x1,81
Dx,}; (c) the subgraph Gig, .

{8, X,Y}, ie, Gun = Proj(G,{S,X,Y}). We will
consistently use II and G, respectively, to represent the
minimal reduction IT;y and the projection Gy;y. For conve-
nience of analysis, we will assume that outcome F[Y|s]
are provided. However, our methods extend trivially to
settings where E,[Y|s] are unknown.

3.1. Optimism in the Face of Uncertainty

We now introduce a new online algorithms, OFU-DTR, for
learning the optimal dynamic treatment regime in an un-
known SCM. OFU-DTR follows the celebrated principle
of optimism in the face of uncertainty (OFU). Like many
other OFU algorithms (Auer et al., 2002; Jaksch et al., 2010;
Osband & Van Roy, 2014), OFU-DTR works in phases com-
prised of optimistic planning, policy execution and model
updating. One innovation in our work is to leverage the
causal relationships in the underlying environment that en-
ables us to obtain tighter regret bounds.

The details of the OFU-DTR algorithm are described in
Alg. 2. During initialization, it simplifies the policy space II
and causal diagram G using Reduce and Proj. OFU-DTR
interacts with the environment through policies in II in re-
peated episodes of ¢ = 1,...,7T. At each episode t, it
maintains a confidence set P; over possible parameters of
P, (s) from samples collected prior to episode t. We will
discuss the confidence set construction later in this section.
Given a confidence set P;, OFU-DTR computes a policy
o'y by performing optimistic planning. More specifically,
let V. (Px(s)) denote the function for E,, [Y] given by
Eq. (1). OFU-DTR finds the optimal policy o’ for the
most optimistic instance P.(s) from P; that induces the
maximal outcome V: (Py(s)). Since II is soluble, one
could solve for o’y by extending the standard single pol-
icy update planner (Lauritzen & Nilsson, 2001), which we
describe in (Zhang & Bareinboim, 2020, Appendix D). Fi-
nally, OFU-DTR executes o'y throughout episode ¢ and new
samples Xt, St are collected.

Confidence Set Consider a soluble ordering < on G, .
Let S be ordered by S; < --- < S,,,. For any S*), let
Jis) be a subgraph of G which includes S*) and edges

Algorithm 2 OFU-DTR
1: Input: Signature [G,I1,Y],d € (0,1).
2: Initialization: Let IT = Reduce(G,I1,Y) and let
G =Proj(g,{S,X,Y}).

3: for all episodest = 1,2,... do

4:  Define counts n'(z) for any event Z = z prior to
episode t as nt(z) = Zf: Iizizy.

5. For any Si € S, compute estimates

n'(Zy, 81)
max {nt(iflw 86\ {sk}), 1} .

6:  Let P, denote a set of distributions P,(s) such that
its factor Pz, (si|8k \ {sr}) in Eq. (2) satisfies

[Pa, 186\ {5 }) = Ps, (18 \ {si D) |y < S (2,0),

where fg, (t,0) is a function defined as

PL, (sklse\ {sr}) =

6|Ds, |10g(2[S]|D(s,ux, )\ (5:311/0)
fsk(t,é) = Py .
max {n* (&g, 5k \ {s}), 1}

7:  Find the optimistic policy o such that

L =argmax max V., (Pi(s 3
ohe = argmax i Vo (Ph(s) )

8:  Perform do(o ) and observe X*, S*.
9: end for

among its elements. It follows from (Tian, 2002, Lem. 11)
that P,,(s) factorize over c-components in G.

Corollary 1. Given [G,I1,Y], for any S, € S, let Sy,
denote a c-component in g[ s that contains Sy and let
X, = Pa(Si)g \ Sk. Px(s) could be written as:

Pu(s) = [] Pa.(sulse\ {sx}). )

SLeES

Consider the causal diagram G of Fig. 2a as an example. By
definition, the policy space II described in Fig. 2b is mini-
mal. Thus, S = {51, 52}, X = {X1, X2}. We observes in
Fig. 2c that { S5} is the c-component in subgraph Gig, g,
that contains Sy; c-component {S;} contains S in Gi¢g,y)-
Corol. 1 implies Py, 4,(s1,82) = P(s1)Py, (s2), which
gives Py, 5,(S2|s1) = Py, (s2) and Py, 4, (s1) = P(s1).

At each episode ¢, OFU-DTR computes the empirical estima-
tor P%k (sk|8k \{sk }) for each factor in Eq. (2). Specifically,
for samples 3, = { X", S*}!_} collected prior to episode ¢,
I:’a%k (sk|8k\{sk}) is the relative frequency of event S, = s,
at the state S} \ {Si} = 8 \ {sx}, X} = &. The con-
fidence set P; is defined as a series of convex intervals
centered around estimates P};k (sk|8k \ {sk}) (Step 6). The
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adaptive sampling process of OFU-DTR ensures the identi-
fiability of interventional probabilities Pz, (sk|5k \ {sx}).
Lemma 4. Given [G,IL, Y], forany Sy, € S andany ox €
IL Poy (s|Tr, Sk \ {sk}) = Pz, (skSk \ {sk})-

We are now ready to analyze asymptotic properties of
OFU-DTR, which will lead to a better understanding of
their theoretical guarantees.
Theorem 3. Given [G,I1,Y], fixa ¢ € (0,1). With proba-
bility (w.p.) at least 1 — ¢, it holds for any T > 1, the regret
of OFU-DTR is bounded by

R(T, M*) < A(T, 8) +2|S|/Tlog 2ISTT/3), ()
where A(T, 6) is a function defined as

A(T,0) = Y 17/ Ds,ux, [T os(ISIT/6).
SreS

OFU-DTR improves over the state-of-art online algorithms
for DTRs. Consider again the policy space II in Fig. 2b.
Oblivious of the causal diagram G, the algorithm developed
in (Zhang & Bareinboim, 2019) leads to a near-optimal

regret O(y/[Dys, so.x,317) 2 3. Thm. 3 implies that
OFU-DTR achieves a regret bound O(/ |Dys,, x,3|T), re-
moving the factor of /[Dys,1]. In general, if |Dg, %, | <
|Dsux| for some Sy, OFU-DTR outperforms state-of-art
methods by exploiting the causal knowledge of G.

3.2. Posterior Sampling

We now introduce an alternative algorithm, PS—DTR, based
on the heuristics of posterior sampling (Thompson, 1933;
Strens, 2000; Osband et al., 2013). We will focus on the
Bayesian settings where the actual M* is drawn from a set
of candidate SCMs M following a distribution ¢*. The
details of PS-DTR are described in Alg. 3. In addition to
[G,11,Y], PS—-DTR assumes the access to a prior ¢ over
the interventional probabilities Py(s), i.e.,

¢(0) = Y Iip,, (s-0y0" (M). %)

MeM

In practice, for the discrete domains, ¢ could be the product
of a series of uninformative Dirichlet priors. Similar to
OFU-DTR, PS-DTR first simplifies the policy space II and
causal diagram G and proceeds in repeated episodes. At
each episode ¢, PS—DTR updates the posterior ¢(-|F;) from
collected samples 3, = {X? S'}!Z]. It then draws an
sampled estimate of P.(s) from the updated posteriors.

*Dx,} is omitted since we assume E[Y'|s] is provided.

3To the best of our knowledge, the family of algorithms pro-
posed in (Zhang & Bareinboim, 2019) are the first adaptive strate-
gies that work regardless of the causal graph, which extends results
for bandits found in the literature (Zhang & Bareinboim, 2017).

Algorithm 3 PS-DTR
1: Input: Signature [G,II, Y], prior ¢.
2: Initialization: Let IT = Reduce(G,I1,Y) and let
g= Proj(g; {S>X>Y})
3: for all episodest = 1,2,... do
4:  Sample PL(s) ~ ¢(-|F;).
5:  Compute the optimal policy o such that

o' = argmax V,, (PL(s)). (7)
ox €Il

6:  Perform do(c%) and observe X*, S*.
7: end for

In Step 5, PS-DTR computes an optimal policy oy that
maximizes the expected outcome V. (P (s)) induced by
the sampled P.(s). Finally, oy is executed throughout

episode ¢ and new samples X, S* are collected.

Theorem 4. Given [G,11, Y] and a prior ¢, if ¢ satisfies
Eq. (5), it holds for any T > 1, the regret of PS-DTR is
bounded by

R(T,¢") < A(T,1/T) + 1, (6)
where function A(T, §) follows the definition in Thm. 3.

Compared with Thm. 3, the regret bound in Thm. 4 implies
that PS—-DTR achieves the similar asymptotic performance
as OFU-DTR. In OFU-DTR, one has to find an optimal pol-
icy oy for the most optimistic instance in a family of SCMs,
whose distribution P, (s) are imprecise, bounded in a con-
vex polytope P; (Eq. (3)). On the other hand, the policy
o'y in PS-DTR is a solution for SCMs with fixed probabil-
ities PL(s). Since II is soluble, such policy o could be
obtained using the standard dynamic program solvers (Nils-
son & Lauritzen, 2000; Koller & Milch, 2003). Preliminary
analysis reveals that solving for the optimal policy with with
imprecise probabilities performs at least the double of the
number of arithmetic operations required with fixed-point
values (Cabaiias et al., 2017). This suggests that PS-DTR
is more computationally efficient compared to OFU-DTR.

4. Learning From Observational Data

Algorithms introduced so far learn the optimal policy
through repeated experiments from scratch. In many ap-
plications, however, conducting experiments in the actual
environment could be extremely costly and undesirable due
to unintended consequences. A natural solution is to ex-
trapolate knowledge from the observational data, so that the
future online learning process could be accelerated.

Given the causal diagram G, one could apply standard causal
identification algorithms (Tian, 2002; Tian & Pearl, 2002;
Shpitser & Pearl, 2006; Huang & Valtorta, 2006) to esti-
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mate the causal effect (e.g., Pz, (sx|Sx \ {sx})) from the
observational distribution P(v). However, challenges of
non-identifiability could arise and the target effects may be
not uniquely computable from the data.

Inferring about treatment effects in non-identifiable settings
has been a target of growing interest in the domains of
causal inference (Balke & Pearl, 1995; Chickering & Pearl,
1996; Richardson et al., 2014; Zhang & Bareinboim, 2017;
Kallus & Zhou, 2018; Kallus et al., 2018; Cinelli et al.,
2019). To address this challenge, we consider a partial
identification approach which reduces the parameter space
of causal effects from the observational data, called the
causal bounds. Following (Tian & Pearl, 2002), for any
S C V, we define function Q[S](v) = P,\s(s). Also,
Q[V](v) = P(v) and Q[0](v) = 1. For convenience, we
often omit input v and write Q[S]. Our first result derives
inequality relationships among () functions.

Lemma 5. Fora SCM (U,V , F, P(u)), let subsets S C
C C V. Foratopological ordering < in G, let S be ordered
by S1 < -+ < Sk. Q[S] is bounded from Q[C)| as:

Q[S] € [A(S,QI[C)), B(S.Q[C))],

where A(S,Q[C)), B(S,Q[C]) are functions defined as
follows. Let W = An(8S)g,.,. W = 8,

A(S,Q[C)) = B(S,Q[C)) = Q[W],

where QW] = Y- .., QIC]; otherwise,
A(S.QIC) = max QW]
B(5.IC]) = nin {QIW] - ;Q[W]}
+ B(S\ {S:},QIC).

where Z = Pa(W)g \ Pa(S)g.

While this result may appear non-trivial, Lem. 5 generalizes
the natural bounds in (Manski, 1990) to longitude settings.
For instance, in Fig. 2a, P,, (s1, s2) is not identifiable due to
the presence of UCs (i.e., X1 +> S7). Let S = {51, S2} and
C = {51, 52, X1}. Lem. 5 allows us to bound P, (s1, s2)
from P(Sl7 S2, Il) as le (81, 52) Z P(Sl, S2, $1) and
P$1 (81, 82) S P(Sl, 52,1’1) — P(Sl,ﬂjl) + P(Sl).

Theorem 5 (C-component Bounds). Given [G,11,Y], for
any Sy, € S, let C be a c-component in G that contains
Sy.. Let Cy = CNSW and let Z = Pa(Cy)g \ Pa(Sk)g-
Pz, (sk|5k \ {sk}) is bounded in [aik,gk,b@k,gk] where

Gz, = max { A(Cy., QIC))/B(Ci \ {81}, QIC)) }.
bays = min { B(Cy, Q[C))/B(C \ {S¢},QIC) }.

Among quantities in the above equation, Q[C] is identi-
fiable from the observational data P(v) following (Tian,
2002, Lem. 7). Thm. 5 improves the DTR bounds in
(Zhang & Bareinboim, 2019) by exploiting the indepen-
dence relationships among variables S. For example, in
Fig. 2a, S; and Sy are independent under do(x). That
is, P, (s2) = Py, (s2,81)/P(s1) for any s;. By Thm. 5,
C = {Sl,SQ,Xl} and Ck = {51,52}. Bounding
Q[Cy] from Q[C] gives P,,(s2) > maxs, P(z1,52]51)
and P, (s2) < ming, P(x1,s2|s1) — P(z1]s1) + 1.

4.1. Online Learning with Causal Bounds

We next introduce efficient methods to incorporate the
causal bounds into online learning algorithms. For any S, €
S, let Cg, denote a parameter family of Pz, (sx|3x \ {sk})
induced by causal bounds [az, s,, bz, s, |- We denote by C
a sequence {Cg, : VS, € S}. Naturally, € defines a family
P . of parameters for the interventional distribution Py (s).
To incorporate the causal bounds €, OFU-DTR finds the
optimal policy o of the most optimistic instance in the
family of probabilities P. N P;. That is, we replace the
optimization problem defined in Eq. (3) with the following:

5 t
Oy = arg max max Vs Pt(s 8
* ngEH PL(s)EP.NP, X( m( )) (8)

Let |Cg, | denote the maximal L1 norm of any pair of prob-
ability distributions in Cy, i.e.,

E |ajk1-§k

Sk

|€Sk‘ =

max

_ = - bik7§k|'
T,5k\ {5k}

We are now ready to derive the regret bound of OFU-DTR
that incorporate causal bounds € through Eq. (8).

Theorem 6. Given [G,11,Y] and causal bounds C, fix a
5 € (0,1). Wp. at least 1 — 6, it holds for any T > 1, the
regret of OFU-DTR is bounded by

R(T, M*) < A(T, €,6) + 2|8 |/ TTog(2ISTT/5).
where function A(T, €, §) is defined as

3 min{|€sk|T, 17\/|®skuxk|Tlog(|S|T/§)}.

SkeS

It follows immediately that the regret bound in Thm. 6
is smaller than the bound given by Thm. 3 if T' <
12%|Dg, %, [T 1og(|S|T/0)/|Cs, |* for some Si. This
means that the causal bounds € give OFU-DTR a head start
when bounds € are informative, i.e., the dimension |Cg, | is
small for some Si. When Py, (sx|5k \ {sk}) is identifiable,
i.e., |€g, | = 0, no exploration is required.

Posterior Sampling We also provide an efficient method
to account for the observational data through causal bounds
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Figure 3: Simulations comparing the sequential multiple assignment randomized trail (rand), OFU-DTR algorithm (ofu-dtr),
PS—-DTR algorithm (ps-dtr) and UC-DTR algorithm (uc-dtr). We use superscript + to indicate algorithms warm-started
with causal bounds derived from the confounded observational data (ofu-dtr™, ps-dtr™, uc-dtr™).

€ in PS-DTR. We will employ a rejection sampling proce-
dure which repeatedly samples from ¢ until the sampled
estimate P.(s) is compatible with the parameter family P...
That is, we replace Step 4 in PS—DTR with the following:

repeat P.(s) ~ ¢(-|3;) until PL(s) € P,

The remainder of PS—DTR proceeds accordingly, without
any modification. We next show that the above proce-
dure allows PS-DTR to achieve the similar performance
as OFU-DTR provided with the causal bounds €.

Theorem 7. Given [G,I1,Y], a prior ¢ and causal bounds
C, if ¢ satisfies Eq. (5), it holds for any T' > 1, the regret of
PS—-DTR is bounded by

R(T,¢) < A(T,€,1/T) +1, 9)
where function A(T, €, 8) follows the definition in Thm. 6.

Thm. 7 implies that PS-DTR provided with causal bounds
€ consistently dominate its counterpart without using any
observational data in terms of the performance. The con-
dition of improvements coincides with that of OFU-DTR,
which we show in Thm. 6.

5. Experiments

We evaluate the new algorithms on several SCMs, including
multi-stage treatment regimes for lung cancer (Nease Jr &
Owens, 1997) and dyspnoea (Cowell et al., 2006). We found
that the new algorithms consistently outperform the state-
of-art methods in terms of both the online performance and
the efficiency of utilizing the observational data.

Throughout all the experiments, we test OFU-DTR algo-
rithm (ofu-dtr) with failure tolerance 6 = 1/T, OFU-DTR
with causal bounds (ofu-dtr™) with causal bounds derived
from the observational data, PS—-DTR algorithm (ps-dtr)
using uninformative dirichlet priors, and PS—-DTR incor-
porating causal bounds via rejection sampling (ps-dtr™).

As a baseline, we also include the sequential multiple as-
signment randomized trail (rand), UC-DTR algorithm (uc-
dtr), and causal UC-DTR algorithm (uc-dtr™) developed in
(Zhang & Bareinboim, 2019). To emulate the unobserved
confounding, we generate 2 x 10 observational samples
using a behavior policy and hide some of the covariates (i.e.,
some columns). Each experiment lasts for T = 5.5 x 103
episodes. For all algorithms, we measure their average re-
grets R(T, M*)/T over 100 repetitions. We refer readers to
(Zhang & Bareinboim, 2020, Appendix E) for more details
on the experiments.

Lung Cancer We test the model of treatment regimes
for lung cancer described in (Nease Jr & Owens, 1997).
Given the results of CT for mediastinal metastases, the physi-
cian could decide to perform an additional mediastinoscopy
test. Finally, based on the test results and treatment his-
tories, the physician could recommend a thoracotomy or
a radio therapy. The average regret of all algorithms are
reported in Fig. 3a. We find that our algorithms (ofu-dtr,
ofu-dtr™), leveraging the causal diagram, demonstrate faster
convergence compared to the state-of-art methods (uc-dtr,
uc-dtr). The causal bounds derived from the observational
data generally improve the online performance (ofu-dtr™,
uc-dtr™). By exploiting sharper causal bounds, ofu-dtr™
finds the optimal treatment policy almost immediately while
uc-dtr still does not converge until 4 x 102 episodes. We
also compare the performance of OFU-DTR and PS-DTR
in Fig. 3b. In the pure online settings (without any pre-
vious observation), ps-dir shows faster convergence than
ofu-dtr. Provided with the same causal bounds, ps-dtr™
rivals ofu-dtr™ in terms of the performance and finds the
optimal policy after only 500 episodes.

Dyspnoea We test the model of treatment regimes for
dysponea (shortness of breath) described in (Cowell et al.,
2006), called DEC-ASIA. Based on the patients’ travel his-
tory, the physician could decide to perform a chest X-ray.
If a test is carried out, the doctor has access to the results
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and the symptom of dysponea at the time she determin-
ing whether to hospitalize or not. We measure the average
regrets for all algorithms, reported in Figs. 3¢ and 3d. As ex-
pected, OFU-DTR consistently outperforms the state-of-art
methods UC-DTR in terms of both the online performance
(ofu-dtr, uc-dtr) and the efficiency of extrapolating obser-
vational data (ofu-dtr™, uc-dtr*). Compared to OFU-DTR,
PS-DTR demonstrates faster convergence in the pure online
settings (ps-dtr) and achieves similar regrets when obser-
vational data are provided (ps-dtrt). These results suggest
that PS—-DTR seems to be an attractive option in practice.

6. Conclusion

We present the first online algorithms with provable regret
bounds for learning the optimal dynamic treatment regime
in an unknown environment while leveraging the order rela-
tionships represented in the form of a causal diagram. These
algorithms reduce the learning problem to finding an opti-
mal policy for the most optimistic instance from a family of
causal models whose interventional distributions are impre-
cise, bounded in a set of convex intervals. We believe that
our results provide new opportunities for designing dynamic
treatment regimes in unknown, and structured environments,
even when the causal effects of candidate policies are not
point-identifiable from the confounded observational data.
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Appendix A. Proofs of Results in Section 2.1

In this section, we provide proofs for the results presented in
Sec. 2.1. We first introduce some notations and lemmas that
will be instrumental in the proofs. For a DAG G and a subset
of nodes X, we denote by G a subgraph of G by removing
all incoming arrow into X; Gx stands for a subgraph of
G by removing all outgoing arrow of X . For a signature
[G,I1,Y], we will consistently use G, to represent the
manipulated diagram of II. For a subset X' C X, let
G, « be a manipulated diagram obtained from G and II
by changing parents to each treatment node X € X' to
nodes in H x; arrows pointing to other treatments X \ X’
remain the same. For a reduction IT" of policy space II,
unless it is explicitly specified, the manipulated diagram
of II" is denoted by QU/X/. For any policy ox € II and
subset of treatments X’ C X, we denote by ox a partial
policy obtained from ox with restriction to treatments in
the subset X',

Our proofs depend on the three inference rules of o-calculus
introduced in (Correa & Bareinboim, 2020, Thm. 1). The
rules are derived based on the soundness of d-separation in
DAGs. We first show that some basic causal constraints are
preserved under the removal of irrelevant treatments.

Lemma 6. Given [G,I1,Y], let subset X C X \
(X N An(Y))g,, . For any treatment X € X, X ¢
An(Y)gUX\X ifand only if X & An(Y')

Gox"

Proof. We first prove the “if” direction. For any treatment
X ¢ An(Y)g, . , suppose there exists a directed path g
(called causal path) from X to Y in gax\x. Since X ¢
An(Y)g, . , path g must contain incoming arrows V; — X'
for some X’ € X such that X # X’. Let X’ denote the
last treatment on [ that are in X. We could then obtain from
g a subpath ¢’ that is a causal path from X’ to Y in G,

Since X" is the last treatment on g that is in X , the subpath
! Anonymous Institution, Anonymous City, Anonymous Region,

Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

¢’ must also exists in Gy, i.e., X' € An(Y)g
a contradiction.

< which is

o

We now prove the “only if”” direction. Suppose there exists
a treatment X € An(Y)g, but X ¢ An(Y)g”X\x' Let

g denote a causal path from X to Y in G, . Since X ¢
An(Y)gax\)2 , path g must contain incoming arrows V; —

X' for some X’ € X such that X # X’. Let X’ denote
the last treatment on [ that are in X . We could thus obtain
a causal path ¢’ from X’ to Y in G, . This means that
X" € An(Y)g, , , which is a contradiction. O

Lem. 6 allows us to show that the acyclicity is preserved
under reduction.

Lemma 7. Given [G,11,Y], let II' be a reduction of 1L
Let gr,fxl denote the manipulated diagram of TI'. gafxl is
acyclic if G and G, are acyclic.

Proof. 1t suffices to prove that the acyclicity is preserved
under the removal of irrelevant treatments and evidences.
Suppose IT' is a reduction of IT obtained by removing irrele-
vant evidences S — X. Since G, is a DAG and removing
arrows from a DAG does not create cycles, QU/X, is acyclic.

Consider now that IT" is a reduction of IT obtained by remov-
ing irrelevant treatments X . Suppose there exists a cycle
[ in g[,/x/. Since both G and G, are acyclic, there must

exist a pair X, X, on! where X; € X and X, e X\ X.
Lem. 6 implies that X; ¢ An(Y)g , . By definitions,
X/

X, € An(Y)gaX , 1.e., there exist a causal path g from X»

toY in G, . Since X are irrelevant in Go x » g must not con-
tain any incoming arrow V; — X’ where X’ € X . That s,
path g is preserved in QU;(/ . We could thus obtain a causal
path from X; to Y by concatenating g with a subsequence
in [ from X7 to X5, which is a contradiction. O

We are now ready to prove the results presented in Sec. 2.2.
By Lem. 7, any reduction IT" of the policy space IT will
induce a DAG QU;(/ . We could thus assume without loss of
generality that for any signature [G, II, Y] of interest, the
manipulated graph G,,, must be a DAG. We will use this
assumption throughout the proof.
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Lemma 1. Given [G,I1, Y], I \ X is equivalent to 11 if
treatments X are irrelevant.

[iroof. Let I’ denote the reduction IT \ X. By definitions,
X = X\ An(Y)g,, . Forany ox € I let oy, ¢ de-
note its partial policy with restriction in X \ X; naturally,

Tx\x € IT'. Lem. 6 implies that Y is not a non-descendant
of X in gox\x. We thus have

(Y 1L X)g —, Y iU X)g _.

G
ox o x\ % X

Lem. 7 implies that QU/X/ is a DAG. The acyclicity guar-
antee, together with the above independence relationships,
gives that

Pox (y) = Pox\,-( ().

The above equality is ensured by (Correa & Bareinboim,
2020, Thm. 1), which proves the statement. O]

Lemma 2. Given [G,11, Y], 1\ {S — X} is equivalent
to I1 if evidences S — X are irrelevant.

Proof. Let II' denote the reduction IT \ {S — X}. If
X ¢ An(Y)g, ., we have

(Y 1L X)

Gy X"

where G+ is a subgraph of G, by removing incoming
arrows into X . By Rule 3 of (Correa & Bareinboim, 2020,
Thm. 1), the above independence relationship implies that,
for any policy ox € Il and any o’y € {Dy, — Dx},

PUX\X70'X (y) = PUX\X,U’X (y)

Let the decisionrule oy € {Dy, \ g+ Dx}andleto’y =
{ox\x,0'%}. We thus obtain a policy o’y € II' such that
Esy [Y] = Ex[Y].

ox

We now consider the case where X € An(Y)g, . By basic
probabilistic operations,

PUX (y) = Z PUX\X-,»T(hX)O—X(x|hX)P0x\X’x(y|hX)'

hx,:E

(10)
Since S +— X are irrelevant,
(Y 1L S|Hx+\ S)g,, -

Since Hx are all parent nodes of X in G, , the above
independence relationship is equivalent to

(Y 1L S|Hx \ S)

Gy X"

By Rule 1 of (Correa & Bareinboim, 2020, Thm. 1), this
relationship implies that:

Pax\x,z(y|hX) :PUX\X,w(y|hX\§)~ (1)

Egs. (10) and (11) together gives
Pry(y) = Z Pax\x,w(y‘hX \ 8)
hx\é,a:
: ZPUX\XJJ(hX)UX(xth)

= Z Pox\xw(y‘hX\g)

hx\é,z
“Poyx .o (hx \ 8)a’y (x|hx \ 8). (12)

where o’ (x|hx \ §) is a function given by:

' (x 3) = ZEPUX\X;I(hX)UX(:Bth)
UX( |hX\ ) B p”x\x,x(hX \,§)

P,

Since X is not an ancestor of Hx in G gx\x,m(hx)

is not a function of x. Therefore,
> s Poxoxoa(hx)ox (zlhx)
o'y (z|hx \ 8) = A ~
zgg: X Z PUX\X-,fﬂ(hX \ S)
_ Zé PUX\X77f(hX) Zg, Ux(l‘|hx)
PCTX\X#L’(hX \ §)

_ Zg PUx\xﬂE(hX) _
P"'X\Xﬂc(hX \5)

O’x?’

x

Therefore, oy is a decision rule in the probabilistic space
of {DHX\S' — Dx}. Let o’y = {ox\x,0%}. Eq. (12)
implies

Py (y) = PU’X (Y):
which completes the proof. O

Lemma 3. Given [G,11,Y], a reduction 11" of the policy
space 11 is soluble if 11 is soluble.

Proof. Let < denote the a total ordering over X induced by
the soluble ordering of II. We first show that < is preserved
under reduction, and first the removal of irrelevant evidences
S — X. For any X; € X,if X; # X, since d-separation
is preserved under edge removal, for any X; < X,

(ox, LAY} N De(X;)|Hx+)g,, |

Consider the case that X; = X. Since S is irrelevant for
X, by definitions, we have

({Y} N De(X;) 1L §|ij+ \ S)g, -
Since < is a soluble ordering, for any X; < X,
({Y} N De(Xy) WL ox; [Hyt)g, -

By the contraction axiom (Pearl, 2000, Ch. 1.1.5),
({Y} N De(X)) 1L ox,, §|Hy: \ §)

Gox -
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which implies
({(Y} N De(X;) L ox,|Hy+ \ S)g, -

Since d-separation is preserved under edge removal, the
above independence also holds in g{,fxl. That is, the total
ordering < is preserved.

We now consider the case where I’ is a reduction of IT
obtained by removing irrelevant treatments X =X \
An(Y)g,, . Thatis, forany ox € II, o5\ x € II'. By
definitions, for a soluble ordering <, for any X; < X,

({Y} N De(X;) LLox; [Hyt)g, -

If X; € X, by Lem. 6, X; ¢ An(Y)g, - The above
relationship is preserved in QUX\X. It thus suffices to focus
on the settings where X; ¢ X.

For any X; ¢ X, by definitions, X must not contain any
ancestor of { Hx,, X;, Y} in G, . That s,

(Y. Hx, X;} 1L X)g . (13)
Similarly, by Lem. 6, we have

(Y Hx, X5} L X)g . (14)

TX\X
By Rules 3 of (Correa & Bareinboim, 2020, Thm. 1),
Egs. (13) and (14) imply that
de(y|hxj,$j) :PUX\;((y|hX_7’7x]')' (15)

Since < is a soluble ordering, for any X; < X,

Gox -

{Y} N De(X;) 1L o, [Hy+)

By (Koller & Milch, 2003, Lem. 5.2) (which can be seen as
the combination of Rules 2 and 3 in (Correa & Bareinboim,
2020, Thm. 1)), we have for any o x € II and any decision
rule 0—3(1; S {@HXz — DXi}’

ng(y‘hxj,xj) :PO'X\{Xi}yo'S(i (y|hXj"rj)' (16)

Egs. (15) and (16) imply that for any ox\x € IT' and any
0—3(,1 S {®HXL — ‘DX,;},

PUX\X(thXﬁxj) :PO' y\hxj,a:j).

X\(XU{X; )7, (

in any SCM M conforming to G. By the completeness of
d-separation, for any treatment X; < X; in gax\x

({Y} N De(X;) 1L ox,

Hy+)

an\)-('

It is now sufficient to show that < does not violate the
topological ordering in QU/X/. If IT is a reduction obtained

from II by removing irrelevant evidences, a topological
ordering in G, . is preserved under edge removal. Therefore,
IT is soluble.

Consider now II' is a reduction obtained from IT by remov-
ing irrelevant treatments X = X \ An(Y)g, . Suppose
there exists a pair X;, X; € (X \ X) such that X; < X
and X; € An(X;)g,, - Let g be a causal path from X;
to X; in (]U/X,. Sincex-< is a topological ordering in G, ,,
X; & An(X;)g,, - Path g must contains an incoming edge

V; — X' for some X’ € X. Let X’ be the last such treat-
ment node on g. By definitions, X; € An(Y)g, . We
could thus obtain from ¢ a causal path ¢’ from X' to Y.
Thatis, X’ € An(Y)g,, , which is a contradiction.

This means that < respects the ancestral relationships
among X \ X in gl,/x/. Since Q(,/X/ is a DAG (Lem. 7),
there must exist a topological ordering in Q(,/X/ compatible
with <, which proves the statement. ]

Theorem 2. Given [G,11, Y], Reduce returns the minimal
reduction Iy of a soluble policy space I1.

Proof. By the graphoid axioms of contraction and weak
unions (Pearl, 2000, Ch. 1.1.5), it is verifiable that the re-
duction II after Step 7 has no irrelevant evidences. By
definitions, for any treatment X ¢ An(Y)g, . all of its
evidences are irrelevant. That is, the manipulated graph
Go5 coincides with the subgraph QUX§ where X =
X\ (X NAn(Y))g,, - Therefore, removing irrelevant
treatments X only adds arrows into X in the graph Gox-
Since adding arrows into a DAG does not introduce in-

dependence, II \ X has no irrelevant evidence. That is,
Reduce(G,I1,Y) returns the minimal reduction ITy. O

Proof of Theorem 1

In this section, we will provide proofs for the uniqueness
of the minimal reduction. We first define the stepwise re-
duction, which searches through the space of reductions in
a sequential, stepwise fashion.

Definition 7. Given [G, II, Y], a policy space II' is a step-
wise reduction of I1 if it is obtainable from II by successively
applying the following operations:

1. I" =11\ {X} where X is a treatment in X such that
XgXnNAn(Y)g,,

2. II" =TI\ {S — X} where S is an evidence in Hx for
atreatment X such that ({Y}NDe(X) 1L {S} Hx+\

{SHg, -

Similarly, unless it is explicitly specified, we denote by
QU/X/ the manipulated diagram of a stepwise reduction IT'
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obtained from [G, IT, Y]. We also define the minimal step-
wise reduction as one that does not contain any irrelevant
treatment and evidence.

Definition 8. Given [G,II, Y], a stepwise reduction I yy
of IT is minimal if it has no stepwise reduction.

The operation of stepwise reduction have some interesting
properties, and first, the preservation of irrelevant treatments
and evidences.

Lemma 8. Given [G,11,Y], let II' be a stepwise reduction
of L. For any treatment X € X, if X & An(Y)gax, then
X € An(Y)ga, .

XI

Proof. Suppose 11’ is a stepwise reduction obtained by re-
moving irrelevant some treatments X C X \ An(Y)g, -
The proof follows immediately from Lem. 6.

If IT is a stepwise reduction of IT obtained by removing irrel-

evant evidences. If X ¢ An(Y)g, , X is not an ancestor

of Y in any subgraph of G, ,ie., X € An(Y)g , . O
XI

Lemma 9. Given [G,ILY], let II' = {Dy; + Dx :
VX € X'} be a stepwise reduction of 1. For any X € X',
any evidence S € Hx, if ({Y} N De(X) 1L S|Hx+ \
S)g, > then ({Y} N De(X) 1L S|HY, \ 5)

Gor -

Proof. Suppose that IT' is a stepwise reduction of IT ob-
tained by removing irrelevant evidences. It follows from
(Lauritzen & Nilsson, 2001, Lem. 7) that an irrelevant evi-
dence is preserved by removing other irrelevant evidences.

We now consider the case where I’ is a stepwise reduction
obtained by removing an irrelevant treatment X’ € (X \
An(Y))g, , s therefore, X’ = X \ {X'} and Hy = Hx
forany X € X'. If X ¢ An(Y)g, , Lem. 6 implies that
X & An(Y)g_, . Therefore, the following independence
X/

relationship trivially holds.

(Y} 1 De(X) 1L H|HY \ H)

QUIX/ :

Suppose now X € An(Y)g, . Since X' & An(Y)g, .
Lem. 6 implies that implies that X € An(Y)g , and
XI
X" ¢ An(Y)g_, . This implies that Hx and X are non-
X/

descendants of X in ggfxl .

Since ({Y'} N De(X) 1L H|Hx+ \ H)g,  , the path con-

necting H to Y given Hx+ \ H in o, must be due to the

change of incoming arrows into X". If changing incoming

arrows into X' opens a path containing V; — V + V;

where V' € An(X')g_, , there must exists a causal path
s

from X' to anode in Hx+ \ H. Thatis X’ is an ancestor
for a node in Hx, X, which is a contradiction.

Suppose now changing incoming arrows into X’ opens a
path containing V; + X’ + V5 in QJ/X,. By definitions
of d-separation, there must exist a causal path from X’ to
anode in Hx, X,Y in g”ix/' Since Hx, X,Y are non-
descendants of X in QU:X/, we have a contradiction, which
completes the proof. [

Lems. 8 and 9 imply that for any reduction operation, one
could simulate it through a series of stepwise reduction.
Therefore, we could attain any reduction of the policy space
II through equivalent stepwise reductions.

Lemma 10. Given [G,11,Y], any reduction 1I' of 1 is a
stepwise reduction of 11; any minimal reduction I\ of 11
is a minimal stepwise reduction of 1.

Proof. Lems. 8 and 9 imply that any reduction of a policy
space II could be performed stepwise. That is, any reduc-
tion of II is also a stepwise reduction. Since the minimal
condition of reduction and stepwise reduction are equiv-
alent, any minimal reduction IIy;y of II has no stepwise
reduction. O

Since any minimal reduction of II is also a minimal step-
wise reduction, the set of all possible minimal stepwise
reductions of II must contain all minimal reductions of II.
If the minimal stepwise reduction is unique, then II has at
most one minimal reduction. For any two policy spaces
I, = {@H)l( — DX VX € Xl} and II, = {DHE( —
Dx : VX € X5}, we define their intersection IT; N Il
as a policy space {D 1z — Dx : VX € X1 N Xo}.
The following results establishes the uniqueness of minimal
stepwise reduction.

Lemma 11. Given [G,11,Y], let I1; and 115 be two step-
wise reductions of 11. Then 111 N 11y is a stepwise reduction
of both 11, and I1s.

Proof. Let mq, my be the number of reduction steps re-
quired to obtain II; and IIs from II respectively. We will
show the results by induction after m = mj + mo.

For m = 2, the result follows directly from Lems. 8 and 9.
Suppose the result holds for m < k, where £k > 2 and
consider the case m = k + 1. So max{m,ma} > 1, say
mg > 1. Thus I1; is obtained by successively removing mo
irrelevant treatments or evidences from II. Let IT/, be the
stepwise reduction obtained by removing the first my — 1 of
these. By the induction assumption, IT; N IT} is a stepwise
reduction of IT) obtained by moving at most m4 steps from
II,. Furthermore, II; is also a stepwise reduction of IT)
obtained by removing exactly one irrelevant treatment or
evidence. Since (IIy NII5) NIy = I3 NIy and mq +1 < K,
the induction assumptions yields that IT; N Il is a stepwise
reduction of IIs.
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Similarly, the induction assumptions gives II; N1l is a
stepwise reduction of IT; N I} and also that IT; N II} is
a stepwise reduction of IT;. By definitions, II; N 1l5 is a
stepwise reduction of II and the proof is complete. O

Lemma 12. Given [G,11,Y], there exists a unique minimal
stepwise reduction 1lg vy of 11

Proof. Suppose there exists two different minimal stepwise
reduction II; and II;. Lem. 10 implies that I1I; N Il is
reduction of both II; and Il5, which is a contradiction. [

Finally, we are ready to prove the uniqueness of the minimal
reduction of a policy space.

Theorem 1. Given [G, 11, Y], there exists a unique minimal
reduction Iy of policy space 11.

Proof. By Lem. 10, any minimal reduction Iy of II is also
a minimal stepwise reduction ITs_yy. Since ITg yy is unique

(Lem. 12), there exists at most one minimal reduction ITyy.

Since Iy is well defined from [G, II, Y], II must have a
unique minimal reduction. O

Appendix B. Proofs of Results in Section 3

In this section, we provide proofs for the results presented
in Sec. 3. We will use the notation in (Tian, 2002) and
define function Q[S](v) = P\ s(s) for an arbitrary subset

S C V. Naturally, Q[V](v) = P(v) and Q[0](v) = 1.

For convenience, we often omit input v and write Q[.S].
Corollary 1. Given [G,I1, Y], for any S, € S, let Sy,

denote a c-component in Q[SW] that contains Sy, and let

X}, = Pa(Sk)g \ Sk

s)= ] Pau(sulse\ {s8})- (17

SLeS

P, (8) could be written as:

Proof. Since S are ordered following a topological ordering
=<, Sk & An(Sk_1)g for any Sy. By (Tian, 2002, Lemma
10), we have

Q[SW] = Z QIS™.
P, (s) could thus be written as:

I S QT 4

SpeS

Let CY, ..., Cf denote c-components in Giga) and let C}

be the c-component that contains Sy ; therefore, S, = C¥.

(Tian, 2002, Lem. 11) implies that

QIS™W] = H Q [CF. (19)

Sine Sy & Pa(CF)g foranyi =2,...,1,
dQis®=>"qlcy [ elck.
Sk Sk 1=2,...,1

The above equation, together with Egs. (18) and (19), im-
plies
JL Zsk Q[ i

By definitions, S, = C¥ and Q[C¥] = Pg, (8x), which
complete the proof. O

Lemma 4. Given [G,IL, Y], forany Sy, € S andany ox €
IL, Py (s3], 51 \ {51}) = Pay (sel51 \ {s1).

Proof. By Corol. 1 and basic probabilistic properties,

) =Y I PacCsslsi\{se}) J] ox(alhx).

s,x SLES XeX

Let < be a solution ordering in G, . Marginalizing vari-
ables in (SUX)\ (S UX},) according to a reverse ordering
relative to < gives:

Py (8%, Zk) = Py (5|85 \ {81}) Pox (81 \ {8k}, Tk).

The above equation implies that

for any o x € II, which completes the proof. [

Py (sk|8k \ {3k}, Zk)

Proof of Theorem 3

We begin by introducing some necessary lemmas. We first
show that the confidence set P; contains the actual interven-
tional distribution Py (s) with high probabilities.

Lemma 13. Fix § € (0, 1), for any t > 1, with probability
(w.p.) at least 1 — & /(4t?), Py(s) € Py.

Proof. Fix n*(&y, 8k \ {sx}) in {1,

\/2 log(Q\DSk ‘4t3|‘5’||D(§kuxk)\{sk}|/6)
max {nt(ik, 56\ {sk}), 1}

.,t —1}. Since

< fSk (t75)

where fg, (t,0) is a function defined as

f (t 5) _ 6|Dsk|log(2|s||®(S’ku){'k)\{sk}|t/5)
Sk maX{nt(Qk,gk\{sk})71}

By the concentration inequality of (Jaksch et al., 2010, C.1),
we have for any Sy € S, any &y, i \ {sr},

[Pa, 155\ {s6}) — Pr, 186\ Lsk D)l > foi(2,0).
(20)
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with probability at most §/(4t°|S||D s, x, 1\ {se}])-

Hence a union bound over all possible values of n!(Zy, 55, \
{sk}) = 1,...,t — 1 implies that Eq. (20) holds for any
nt(xk, 8k \ {sk}) with probability at most

t—1

] 0
2. — - .

=1 431 S| |D(SA:UXk)\{Sk}| 4t2|S||D(SkUXk)\{Sk}‘ .

Summing these error probabilities over state-action pairs
D (g,ux,)\ (s, forall S € S gives:

P(Pals) £ P) < 1. O

Lemma 14. Fix 6 € (0,1). With probabilities (w.p.) at
least 1 — $, forallt =1,2,..., V, (PL(s)) > Eys [Y].
P.q X

Proof. Since

1\3\0'1

it follows from Lem. 13 that with probability at least 1 — 3,
P, (s) € P, for all episodes t = 1,2,...

Mﬁ

By definitions, o is the optimal policy for the instance
PL(s) in P, that has the maximal optimal expected outcome.
This implies that

Vo (PL(8)) = Vig, (Pa(s) = Bog [Y]. O

Lemma 15. Fix ¢ € (0,1). Wp. at least 1 — g,for any
T>1,

Vot (Pr(s)) —

[M]=

Yt < 2|S|\/Tlog(2[S|T/3)
1

+ > 12,/I1Ds,x, 1T 108(2IS 11D (5, 05,115, T/6).
SLeS

~
Il

Proof. For simplicity, let V. = S U X. For a solu-
tion ordering < in G, ., let variables in V' be ordered by
Vi < --+ < Viugm. For any policy ox € II and any
i=0,1,...,m + n, we define function V., (v(?); P,(s))
as following:

Vox (””%Pm(s))
_ Zygv(i) Eo[Y|s]Pe(s) [[xex ox (zlhx)
Z/Ugv(i) Po(s) [Ixex ox(z|hx)

Naturally, we have

Vox (v; Py(s)) = Ez[Y]s].

We can decompose V.« (P;(s)) —Y" as a telescoping sum:

Vi (PL(s)) — Y
= > Vo (VO Pl(s)) = Voo (VW PL(s)).
Viev

21

It is a well-known fact in decision theory that no stochastic
policy can improve on the utility of the best deterministic
policy (see, e.g., (Liu & Thler, 2012, Lem. 2.1)). This means
that the policy o must be deterministic. We have for any
Vie X,

Voo (VO PL(s)) = Vo (VW5 PL(s)) =0
The above equation allows to write Eq. (21) as:

Vot (Pa(s)) —Y*

= Z Vok(v( -

VieS

By Corol. 1,

)i PL(s)) = Vior (VD5 Pi(s)). (22)

= II i, (silsi\ {si}).

SLES

For any V; € S, we denote by V; = Sj. Let Pa(f)(s) denote
a distribution obtained from PZ(s) such that its associated
distribution P} (sk|5y \ {sk}) is replaced with the actual

Pmk(5k|8k \ {Sk}) ie.,

2 (s)

= Po(silsi\ {si}) - [ PL(sslsi \ {s5)- 23

S;£V;

We could further decompose V¢ (V~1); Pl(s)) —

Ve (V@: PL(s)) as follows:

Vo (VOD: Po(s) = Vo (VO PL(s)
= Vou (VED: Pi(s)) = Vg (VD1 P (s)) - (24)
+ Vg (VD PO (8)) = Vg (VO Ph(s)).

Egs. (21), (22) and (27) together imply:

T
SV, (Pi(s) - Y

T
=D > Vo (VED:PL(s)) = Vo (VED; PO (s))
V;eS t=1
(25)

T
+ 3D Vo (VOUB0(s)) — Ve (VW PL(s)).
VieS t=1
(26)
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Bounding Eq. (25) For V; € S, we denote by V; = Sj.
By basic probabilistic operations,

Voo (VO Pi(s)) = Voo (VO PJ)(s))
Hptk 186\ {sk}) — Pﬁk('|§k\{5k})”1

s (Vg (VO PEGo )

Sk
<> 6|Ds, [1og(2[S|D (s,ux )\ (5} //9)
- max {nt(a_:k,ék\{sk}),l}

Following the result in (Jaksch et al., 2010, C.3),

T 1

t; \/max {0t (k. 5 \ {sx}), 1}
<3 S (V24 0)nt (@, 8\ {sk))

T 5 \{sk}

By Jensen’s inequality we thus have

XT: 1
t=1 \/max {nt(zk, 5, \ {s1}),1}

<(V2+ 1)\/|D(Sku)‘(k)\{sk}\T7 @27

which gives
T
> v v
p.e
v;es t=1

< > 12,/1D5,0%, T 10g(2IS11D (5,05, (501 T/9)
SKES

(=1 PL(s)) = Voo (VI PO (s))

(28)

Bounding Eq. (26) For any V; € S, we define
Zo(Vi) = Vo (VU P (s)) = Vor (VI3 Po(s)).

Let the sampling history up to episode ¢ be denoted by H; =
{X7, 821, Since |Z,(V;)| < 1and E[Zi41(Vi)|FH] =
0,{Z:(V;) : t =1,...,T} is thus a sequence of martingale
differences. By Azuma-Hoeffding inequality, we have that
for all V; € S, with probability at least

T
Zzt(v

Since >, 4T2 <3 s 6<
ity at least 1 — 7,

DD Ve (V

4T2 l

T log(2|S|T/9).

, it follows that with probabil-

GV P(s)) = Vor (VI: Py(s))

V,eS t=1
< 2|S|\/Tlog(2|S|T/9). 29)
Bounding Egs. (25) and (26) with Egs. (28) and (29) proves
the statement. O

Theorem 3. Given [G,11,Y], fixa é € (0,1). With proba-
bility (w.p.) at least 1 — 6, it holds for any T > 1, the regret
of OFU-DTR is bounded by

R(T, M*) < A(T,6) + 2|S|/Tlog(2|S|T/5),

where A(T, 0) is a function defined as

AT, =3 17\/|D5kux—k|Tlog(|S|T/§).

SKrEeS

Proof. Suppose

T< ) 17°Dg,ux,|log(|SIT/0).
SKES

Since R(T, M*) < T = (\/T)Q, the above equation im-

plies that
R(T,M*) <17 | Y |Dg,ux, |Tlog(|S|T/5)
SKEeS
< 3 17/ 1Ds,0x, 1T log(1SIT/0)
SLeS
= A(T, ).

‘We now consider the case where

T> > 17°|Dg,ux,|log(|S|T/9). (30)
SrLES

Lems. 14 and 15 together imply that with probability at least
l—g—gzl—é,foranyT>1,

T
<2 Vos -v
< 2|S\\/Tlog 2|S|T/9)

+ > 124/1D, 0, T 10g(2IS 1D s, 5,1 (50} I T/9):
SkeS

Whenever Eq. (30) holds,
log(2[S[|D (s, ux, 0\ (s5:3|T/9) < 2log(|S[T/4).
We thus have

R(T, M*) < 2|S|\/Tlog(2]S[T/5)

+ Y 12\/2\®gkuXk\Tlog(|S|T/5)
SLES

< A(T,8) +2|S|\/Tlog(2|S|T/s). O
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Proof of Theorem 4

Note that in the Bayesian setting, the actual SCM M * is
drawn from a distribution ¢* (M) over candidate models in
M. We say that ¢ is the prior of P (s) if

= > Ipuyw)=0y¢" (M), 31)

MeM

Before we prove Theorem 4, we first introduce some neces-
sary lemmas.

Lemma 16. If ¢ satisfies Eq. (31), it holds for any T > 1,

T

T
N En Y=Y EV,. (Pi(s)].  (32)

t=1 t=1

Proof. Let the sampling history J; = {X*, S?}!~1. Since
¢ satisfies Eq. (31), the actual P,(s) and the sampled in-
stance P (s) are identically distributed (Osband et al., 2013,
Lem. 1). We thus have for any ¢,

Eqs [Y] = E[Vyy (Py(s))]
Vo, (Pu(s)) = Voy (Pa(s))]

Ix

E ¢
= E[E[Voy, (Pa(s)) = Voy (Pr(s))13]] =0,
which proves the statement. O

Lemma 17. If ¢ satisfies Eq. (31), it holds for any T > 1,

T
> E[V,y (Pi(s)) — Y] < 0T

+ 37 124/1D, U, IT10g (218D (5,05, (50} [ T/9)
SreS

Proof. Since Py(s) and P.(s) are identically distributed
given any history JH;, following a similar argument in
Lem. 14, we have

P(Py(s),PL(s) € Py) > 1—04.

i (Pr(s)) —

Y't] could thus be written as:

S ElV,
T
> E[V, (PL(s)) - Y'] <oT
:1T
+ Y E[V, (PL(s)) = Y!|Pu(s), PL(s) € Py]. (33)

It thus suffices to bound 31, — Y under the

Vot (Pr(s))

condition that P (s), PL(s) € P;. By Egs. (25) and (26),

SV (Pl(s) ~ Y
t=1
= 3 SV (VD PLs)) — Vg (VOD: P (s))
VieS t=1
T

+ 30 Ve (VO PY () = Vg (VW PL(s)).
By the construction Eq. (23) of P;gi)(s), we have that for
any history 3, = {S%, X"}/2],

EVy (VO B0(8)) = Vi (VW PL(s))[3€,] =
By Eq. (28), we also have

T
3> Ve (VO PL(s)) = Vo (VO PO(s))

VieS t=1

< 3 12\/1Ds,0%, 1T 10g(2IS11D (s, %, (5, 1T/9)
SkeS

The above equation, together with Eq. (33), gives

ElV,

ot (Pr(s)) = Y'] < 6T

M=

-
Il

1

+ 7 124/1D, 0, T 10g(2IS 1D (s, 05,1 (50} T/9):
SLeS

which proves the statement. O

Theorem 4. Given [G,11,Y] and a prior ¢, if ¢ satisfies
Eq. (31), it holds for any T' > 1, the regret of PS—-DTR is
bounded by

R(T,¢%) < A(T,1/T) +1
where function A(T, §) follows the definition in Thm. 3.

Proof. Lems. 16 and 17 together imply that

T

=> E[V,

+ Z 12\/|Dgwgk|Tlog(2|S||D(5kng)\{Sk}\T/(S)
SKES

-Y' <oT

Following a simplification procedure similar to Thm. 3,
R(T,¢*) < A(T,d) + 0T

Fix § = 1/T, which completes proof. O
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Appendix C. Proofs of Results in Section 4

In this section, we provide proofs for causal bounds on
transition probabilities. Our proofs build on the notion of
counterfactual variables (Pearl, 2000, Ch. 7.1) and axioms
of “composition, effectiveness and reversibility” defined in
(Pearl, 2000, Ch. 7.3.1).

For a SCM M, arbitrary subsets of endogenous variables
XY, the potential outcome of Y to intervention do(x),
denoted by Y, (u), is the solution for Y with U = w in
the sub-model M,. It can be read as the counterfactual
sentence “the value that Y would have obtained in situation
U = u, had X been x.” Statistically, averaging u over
the distribution P(w) leads to the counterfactual variables
Y... We denote P(Y,) a distribution over counterfactual
variables Y. We use P(y) as a shorthand for probabil-
ities P(Y, = y) when the identify of the counterfactual
variables is clear. By definitions, P, (y) = P(yx)-

Lemma 5. Fora SCM (U,V,F, P(u)), let subsets S C
C C V. Foratopological ordering < in G, let S be ordered
by S1 < -+ < Sk. Q[S] is bounded from Q[C] as

Q[S] € [A(S,Q[C]), B(S,Q[C)])],
where A(S,Q[C)), B(S,Q[C)) are functions defined as

follows. Let W = An(S)g ., W = S,
A(S,Q[C)) = B(S,Q[C]) = QW],
where QW] = 3", Q[C]: otherwise,

A(S.QIC) = max QW
5(5.0(C) — uin { QW] - Y Qw1
£ B(S\ {S1},Q[C)),

)g \ Pa(S)g

Proof. If W = S, (Tian, 2002, Lemma 10) implies that
Q[S] = Q[W] = }_.\,, Q[C]. Therefore, we have

A(S,Q[C]) = B(S,Q[C]) = Q[W].
If W # S, or equivalently, S C W, by definitions,
Q[S] = P(Sv\s)vQ[S] = P(w'u\'w)'

Let R = W \ S. By basic probabilistic operations,

ZP Sv\57 'v\’w ZP(Sv\w,Tar'lu\w)

Z P(sv\w,rv rv\w)

where Z = Pa(W

Sv\s

By the composition axiom,

P(Sv\w,rvrr'v\w) = P(sv\warv\w) = P(wv\w>

We thus have
QIS] = QW]
Since Q[S] is a function of Pa(S)g, it does not depends

on values of Z = Pa(W)g \ Pa(S)g. Taking a maximum
over Z gives

A(S.Q[C)) = max Q[W].

We now prove Q[S] < B(S, Q[C]) by induction. The base
case W = S is implied by (Tian, 2002, Lemma 10). For
W +#£ S, we assume that

QIS \ {Sk}] < B(S\ {5k}, Q[C])

By basic probabilistic operations,

P(sv\s)

= Z P(Sv\sv T;;\w)

= P(sv\w,rarv\w) + Z P(Sv\w,ra T'/u\w)
r'#r

< P(sv\w,m’rv\w) + Z P((S \ {Sk})v\w,m 7n'lu\w)
v/ #r
= P(sv\wa'rv\w) - P((S\ {Sk})v\w,rvrv\w)
(( \ {sk})v\w 1‘)

ZQ

Since Q[S] and Q[S \ {Sk}] are not functions of Z, taking
a minimum over Z gives

|+ QIS \ {Sk}]-

Qls) < uin { QI - Xew 1} as s

(34)

Replacing Q[S\ { Sk }] with B(S'\ {Si}, Q[C]) proves the
statement. O

Theorem 5. Given [G,I1,Y], for any Sy, € S, let C be a
c-component in G that contains Sy. Let C, = C N S
and let Z = Pa(Cy)g \ Pa(Si)g. Pz, (s|5k \ {sx}) is
bounded in [az, 5, bz, s,| where

s, = max { A(Ck, QIC])/B(Cy \ {54}, QIC) },
bay.s. = min { B(Ck, QIC))/B(Ci,\ {S:},QIC)) }.

Proof. Since C contains Sj, and C;, = C N S*), by the

factorization of Eq. (19),

Pz, (56151 \ {sx}) = Q[Ck]/QICk \ {Sk}]-
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It immediately follows from Lem. 5 that

Q[Cy] A(Cy,Q[CY)
Q[Ck \ {Sk}] — B(Ci \ {Sk},Q[C])

Since Pz, (sx|8x \ {sx}) is not a function of Z =
Pa(Cl)g \ Pa(Sk)g.

Pz, (sg|8k \ {sk}) > mZaX { B A(Cy,QlCY) }

Cr \ {5k}, QIC])

To prove the upper bound, we first write

Q[C] Q[Ck] — Q[Cx \ {Sk}]

Qe S5 T QG (Su)]

By (Tian, 2002, Lemma 10), Q[Cx \ {Sk}] = >_,, Q[Ck].

This implies
Q[Ck] — Q[Cr \ {Sk}] <0.

This means that Q[C]/Q[C% \ {Sk}] is upper bounded
when Q[C}; \ {Sk}] is taking the maximum values, i.e.,

_ Q6] Q[Ck] — Q[Ck \ {Sk}]
Q[Cy \ {Sk}] B(Cy \ {51}, Q[C))

Let W = An(C})g and let Z = Pa(Cy)g \ Pa(W)g. By
Eq. (34),

<1+

min; {QW] -, QW]}
B(Cy \ {Sk},Q[CT)

__ B(CQ[C)

~ B(Cy \ {5:},Q[C])

Q[Cy]
QICk \ {Sk}] —

Since Pz, (sk|8x \ {sx}) is not a function of Z =
Pa(Ck)g \ Pa(Sk)g, taking minimum over z gives

B(Cy, Q[C)) }
Ci \ {Sk},Q[C])
Finally, the interventional quantities Q[C] is identifiable

from the observational distribution P(v) following (Tian,
2002, Lem. 7), which completes the proof. O

Pay (sl f51)) < o {

Theorem 6. Given [G,11,Y] and causal bounds €, fix a
§ € (0,1). Wp. at least 1 — 0, it holds for any T > 1, the
regret of OFU-DTR is bounded by

R(T, M*) < A(T, €,5) +2|S|\/Tog(2IS[T/5),

where function A(T, €, 0) is defined as

> min {€I7.17/[Ds, ., Tou(SI770) |

SLeS

Proof. Let P, denote the family of parameters P, (s) de-
fined by causal bounds €. Since P(P(s) € P.) =1,

P(Py(s) & (P.NPy))
< P(Py(s) € Po) + P(Pa(s) € Py)
= P(Py(s) £ Py) < 5/(4t2).

The last step follows from Lem. 13. By similar arguments
of Lem. 14, we have

T
R(T7 M*) S ZVTH (P;(S)) - Yta

forallt =1,2,...
(26) and (29),

T
> Vi, (Pi(s)) = Y' < 2|S|\/Tlog(2[S|T/5)

with probabilities 1 — /2. By Egs. (25),

T
30 D Ve (VI PL(s) = Ve (VOD; PY(s).

V,eS t=1

It is thus sufficient to show that
> Vi, (VU PL(s)) = Ve (VU1 PY (s))

t=1
< min {|esk T, 17\/|Dskuxk|Tlog(|S|T/5)}. (35)

Suppose

T < 17%|Dg, x| log(|S|T/6). (36)
By the causal bounds Cg, ,
Ve, (VU1 Py() = Ve (VO PEO(s))
< || Pa (186 \ {sk}) — Pa, (15 \ {ss D) |,

s { Vi, (VO L) |

Sk

< min{(‘fsk|,1},

which implies
D Ve (VI Py(s) = Ve (VITD P (s))
t=1
< min{|€gk|T,T} = min{€5k|T, (\FT)2}.
By Eq. (36), we have

T
> Vi, (VU PL(s)) = Ve (VU PU (s))

t=1

< win { €5, 1, VT /172D, 1ou(1817/0) |

= min {|esk IT, 17\/|®5kuXk |T10g(|5|T/5)},
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which proves Eq. (35). We now consider the case where

T > 17%Dg,ux, | log(|S|T/3). 37
The definitions of parameter families P. N P; imply that
Ve (VY5 Po(s)) = Ve, (VOTD; P ()
< || PL, I8k \ {sk}) — P, (86 \ {st}) ||,

s (v (v o))

Sk

6|Dg, |log(2|S]|D s, 1% t/6
Smin{lesk|,2 |Ds, | log(2] J| Eskuxk)\{skﬂ /9)
max {nt(wk,sk\{sk}),l}

By Eq. (27), we have

T
SN Ve (VO PL(s)) = Vi, (VED; P (s))

V;eS t=1

< Z min {|€S,€ T,

SKES
12,105, cx, T Vou ISP s, 5 [T/0) ) 39)
Whenever Eq. (37) holds,

log(2[S||D (s, ux, 0\ (s5,:3|T/9) < 2log(|S[T/4).
We thus write Eq. (38) as

T
YD Ve (VU PL(s)) = Vi, (VI P (s))

V;eS t=1

<y min{|(§skT, 12\/2|Dskuxk|Tlog(|ST/6)}

SkeS

which implies Eq. (35). This completes the proof. O

Theorem 7. Given [G,I1,Y], a prior ¢ and causal bounds
C, if ¢ satisfies Eq. (31), it holds for any T > 1, the regret
of PS-DTR is bounded by

R(T,¢) < A(T,€,1/T) + 1,

where function A(T, €, 0) follows the definition in Thm. 6.
Proof. Since ¢ satisfies Eq. (31), the rejection sampling
ensures that P,(s) and PL(s) are identically distributed

given any history JH; and causal bounds €. Following a
similar procedure as the proofs for Lems. 16 and 17,

T
R(T,¢") =Y E[Vaxi(Pi(s)) — V'] < 6T

T
+ ) D BlVa, (VI PL(s)) = Ve, (VD P (s))].

V;es t=1
Following a simplification procedure similar to Thm. 6,
R(T,¢*) < A(T,C,8) + 6T
Fix § = 1/T, which completes the proof. O

Appendix D. Optimistic Single Policy Update

In OFU-DTR, the agent needs to find a near-optimal policy
o'y for an optimistic P.(s) € P;. We can formulate this
as an general problem as follows. For any S; € S, let
Ps.\{sr},z, denote a convex polytope over Pz, (sk|5k \
{sk}). We are searching for a policy o x and a distribution
P, (s) solving the optimization problem defined as:

o S () Vo (Fo(5))
st. Py(s) = [] Pa.(selse\ {sx})

SKES
VS, €S, Pi:k('|'§k \ {Sk}) € ?5k\{5k}ajk
VSk €8, > Pa, (sklsk\ {sr}) =1,

Sk
VS, € S, Pz, (Sk‘gk \ {Sk}) € [O, 1].

(39)

In general, solving the above polynomial program could
be NP-hard (Hastad, 2001). We will next introduce an
alternative factorization of Py(s) that allows us to solve
the optimization program in Eq. (39) through a series of
local optimization. Consider a soluble ordering < in G,
defined as follows. Let X be ordered by X; < --- < X,.
We define C1, . .., C), be a partition over S as:

Ci=Hx, \ (Ui Hyy).
We assume that S U X are ordered by < as follows:
Ci<X1<Cy<X9<---=<Cp, <X,
Since I is soluble and minimal, P, (s) could be factorized

over < as follows:

n+1

Po(s)=] TI Plselra\ {si}).

=2 SpeC;_1

where Paj, = (Hyr U{Sih)U{S; € Cim1:S; < Sk

P(sy|pa,,\{sk}) is a mapping from domains of Pay,\ { Sk}
to the probabilistic domains over values of Si. Itis verifiable
that S C Paj. We reformulate the optimization program
in Eq. (39) using the above factorization as follows:

o B oV P
s.t. Py(s) = H f:’(Sk|PAak \ {sx})

SkLeS
VS € S, pjk('lgk—l) S Tgk\{sk},ik (40)
VSk €8, Y Plsilpa, \ {st}) = 1,

Sk

VSk S S, P(Sk|ﬁa,€ \ {Sk}) (S [O, 1]
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By constructions, Eq. (40) provides an upper bound for the
solution of Eq. (39). However, since it still considers the con-
fidence set P, \ (s,},2, the approximate given by Eq. (40)
is still reasonably close to the actual optimal F,s [Y].

Since 11 is soluble, one could solve Eq. (40) through a series
of local optimization following a reverse ordering relative
to <. For any X; € X, we define function V (x;, hx,) as:

Viephx)= Y, EalYls] [T Plsilya; \ {s:})

\{hx,,z:} S;eS

II ox@lhx)

XeX\{X;}
The optimal decision rule ox, (z;|hx,) is given by

ox,(x5)hx,) = argmax V (z;, hx, ).

x;

For any Sj, € S, we define function V (a,,) as:

Vga) = Y EalYls] ] Plsilda;\ {s:})

v\pay S;€S\{Sk}

I1 ox(lhx)

XeX

The solution P(sy|pa,, \ {sk}) is given by

P(silpa, \{sk}) = argmax Y p(si)V(pay).
PEPs \ (s} ,24 Sk

In the above equations, p(sy) is a vector in the convex poly-
tope P, \(s,1,3,- The maximization of p(sy) is a linear
program over P, \ 5, }.z,» Which is solvable using the stan-
dard linear programming algorithms.

Appendix E. Experimental Setup

In this section, we provide details of the setup for exper-
iments presented in Sec. 5. We demonstrate our algo-
rithms on several SCMs, including multi-stage treatment
regimes for lung cancer (Nease Jr & Owens, 1997) and
dyspnoea (Cowell et al., 2006). In all experiments, we
test OFU-DTR algorithm (ofu-dtr) with failure tolerance
d = 1/T, OFU-DTR with causal bounds (ofu-dtr™) with
causal bounds derived from observational data, PS—-DTR
algorithm (ps-dtr) using uninformative dirichlet priors, and
PS-DTR incorporating causal bounds via rejection sam-
pling (ps-dtr™). As a baseline, we also include the sequen-
tial multiple assignment randomized trail (rand), UC-DTR
algorithm (uc-dtr) and causal UC-DTR algorithm (uc-dtr™)
developed in (Zhang & Bareinboim, 2019). To emulate the
unobserved confounding, we generate 2 x 10® observational
samples using a behavior policy and hide some columns
of covariates. Each experiment lasts for T = 5.5 x 103
episodes. For all algorithms, we measure their average re-
grets R(T, M*)/T over 100 repetitions.

Q)= 0 NG)
A

©

Figure 4: There causal diagram G, yn¢ of the lung cancer
staging example.
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CT Result

Mediastinal Metastases
Mediastinoscopy Result 0,
Treatment Death
Mediastinoscopy Death
Life Expectancy

CT?

Mediastinoscopy?
Treatment
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Table 1: Summary of variables in the Lung cancer staging
example described in Fig. 4.

Lung Cancer Staging

We consider a multi-staged treatment regime for the lung
cancer introduced in (Nease Jr & Owens, 1997), which we
shall refer to as M yng.

Consider the case of a patient with a known non-
small-cell carcinoma of the lung. The primary
tumor is lcm in diameter; a chest x-ray exami-
nation suggests that the tumor does not abut the
chest wall or mediastinum. Additional workup
reveals no evidence of distance metastases. The
preferred treatment in such a situation is thora-
cotomy, followed by lobectomy or pneumonec-
tomy, depending on whether the primary tumor
has metastasized to the hilar lymph nodes.

Of fundamental importance in the decision to per-
form thoracotomy is the likelihood of mediastinal
metastases. If mediastinal metastases are known
to be present, most clinicians would deem thora-
cotomy to be contraindicated: thoracotomy sub-
jects the patient to a risk of death but confers no
health benefit. (Some surgeons attempt to resect
mediastinal metastases that are ipsilateral to the
primary tumor, but this approach remains contro-
versial.) If mediastinal metastases are known to be
absent, thoracotomy offers a substantial survival
advantage, so long as the primary tumor has not
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metastasized to distant organs. There are several
diagnostic tests available to assess any involve-
ment of the mediastinum. For this example, we
shall focus on computed tomography (CT) of the
chest and mediastinoscopy. Our problem involves
three decisions. First, should the patient undergo
a CT scan? Second, given our decision about CT
and any CT results obtained, should the patient
undergo mediastinoscopy? Third, given the re-
sults of any tests that we have decided to perform,
should the patient undergo thoracotomy?

The graphical representation G, yn¢ of this environment is
shown in Fig. 4. The detailed description of each node is
shown in Table 1. We will consistently use 0 for “Yes”,
1 for “No” and 2 for “N/A”. We will next provide the nu-
merical specification of this environment. For any vari-
able X, we will use zg,x1, 22 to represent realizations
X =0,X = 1,X = 2 respectively. The values of the
conditional probabilities are given in Table 3; they are for
illustrative purposes only.

To generate the observational data, we sample from M| yng
following the behavior policies described in Table 3 (i.e., the
conditional probability distributions of GG, H, I') and collect
observed outcomes. To emulate the unobserved confound-
ing, we hide columns of variables A, B, D, F, inducing an
observational distribution P(c, f, g, h,4). The causal dia-
gram G compatible with P(c, f, g, h,) is thus the projec-
tion of G, yxg onto variables C, F, G, H, I, which we show
in Fig. 5a. Hypothetically, the “actual” SCM M* conform-
ing to G is the projection of SCM M| yys onto variables
C,F,G, H, I, following an algorithm described in (Lee &
Bareinboim, 2019). We will use the lift expectancy F' as the
primary outcome. The candidate policy space II is given by
{Dc + Du,Dia,u,cy — Dr}. We summarize this learn-
ing problem as the signature [G, II, F]; Fig. 5b describes its
associated manipulated diagram G, ;.

The optimal policy o7, ; is described as follows:

I: U?(i1|g,h0,cl)=0,
otherwise o7 (i1|g, h,c) = 1.
H: oy (i]g) = 1.

The expected outcome Egy | [F] of the optimal policy is
equal to 0.5891. The procedure Reduce(G,I1,Y) finds the
minimal reduction Iy = {Dy — Dy, Din,cy — Dr}.
OFU-DTR and PS-DTR thus focus on the transition distri-
butions P, (c). For completeness, we provide parameters for
transition probabilities P(g) and Py (c) and the immediate
outcome Ej, ;[F'|c] in Table 4.

Following the analysis in the main draft, we assume that
parameters of the immediate outcome Ej, ;[F|c] are pro-
vided. In all experiments, our proposed algorithms ofu-dtr,

(@¢g

®) Gop ;s

Figure 5: (a) A causal diagram G induced by the projection
of G yng onto C| F, G, H, I; (b) the manipulated diagram
QJHYI with IT = {DG — Dy, @{07]{,0} — D[}

ofu-dtr™, ps-dtr, ps-dtr™ have access to the causal diagram
G; while other baseline algorithms rand, uc-dtr, uc-dtr™ do
not. Oblivious of the independence between G and C' under
do(h), UC-DTR learns parameters of transition probabilities
Py, (c) using the empirical mean of distribution Py, (c|g).

Among these algorithms, rand, uc-dtr, ofu-dtr and ps-dtr
learn from the scratch. Other procedures including ofit-dtr™
and ps-dir™ derive causal bounds [ap, ¢, by ] over Py (c)
from P(g,c, f,h,i) and G using the method introduced
in Thm. 5. Oblivious of the causal diagram G, uc-drt
derive bounds Pj(c|lg) € [an,g,c,bn,qg,c]. The details of
these causal bounds are given in Table 5.

Dyspnoea

We consider a multi-staged treatment regime for the dys-
pnoea introduced in (Cowell et al., 2006), which we shall
refer to as Mpyspnoga-

Shortness of breath (dyspnoea) may be due to tu-
berculosis, lung cancer, bronchitis, none of them
or more than one of them but its presence or ab-
sence does not discriminate between the diseases.
A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk
factor for both lung cancer and bronchitis. Sup-
pose a doctor must decide whether a patient arriv-
ing at a clinic is to be hospitalized or not. Before
taking the decision the doctor can obtain informa-
tion as to whether the patient has gone to Asia or
suffers from dyspnoea, but other relevant factors
like smoking history or the presence of any dis-
eases are not known. It has also been suggested
that it may be worthwhile to screen the patient by
taking chest X-rays. The results of a chest X-ray
do not discriminate between lung cancer or tuber-
culosis. Proponents of the test say that it should
be carried out at least for the people that have
visited Asia. If a test is carried out, the doctor
has access to the results at the time he determines
whether to hospitalize or not. If the patient suffers
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@g

®) Gox

Figure 7: (a) A causal diagram G induced by the projection of Gpyspnoea Onto A, X, D, P, H,Y; (b) the manipulated diagram
Gox  With policy space Il = {D4 = Dx,Dea x p.py = D}

Variable Description | Domain
S Smoking 0,1
A Visit to Asia? 0,1
T Tuberculosis? 0,1
B Bronchitis? 0,1
L Lung cancer? 0,1
FE | Either tub. or cancer? 0,1
X X-ray? 0,1
D Dyspnoea? 0,1
P Positive X-ray? 0,1
H Hospitalize? 0,1

Table 2: Summary of variables in the dyspnoea treatment
regime example described in Fig. 6.

from tuberculosis or lung cancer, he can be treated
better in hospital, but hospitalization of healthy
individuals should be avoided. Taking X-rays is
harmful in itself and the adverse effects are more
severe if the patient suffers from tuberculosis.

The graphical representation Gpyspnoea Of this environment
is shown in Fig. 6. The detailed description of each node is
shown in Table 2. We will consistently use 0 for “Yes” and 1
for “No”. We will next provide the numerical specification
of this environment. For any variable X, we will use zq, z;
to represent realizations X = 0, X = 1 respectively. The

values of the conditional probabilities are given in Table 6;
they are for illustrative purposes only.

To generate the observational data, we sample from
Mpyspnoea following the behavior policies described in
Table 2 (i.e., the conditional probability distributions
of X, H) and collect observed outcomes. To emulate
the unobserved confounding, we hide columns of vari-
ables S, B, L, T, F, inducing an observational distribution
P(a,x,h,d,p,y). The causal diagram G compatible with
P(a,x,h,d,p,y) is thus the projection of Gpyspnoea ONtO
variables A, X, H, D, P, Y, which we show in Fig. 7a.
Hypothetically, the “actual” SCM M?* conforming to
G is the projection of model Mpyspnopa ONto variables
A,X,H,D, P,Y, following an algorithm described in (Lee
& Bareinboim, 2019). We will use the utility Y as the
primary outcome. The candidate policy space II is given
by {Dv — Dx,Dyax,p,py — Du}. We summarize
this learning problem as the signature [G,II, F]; Fig. 7b
describes its associated manipulated diagram G, ;.

The optimal policy oy j is described as follows:

H: U;{<h1|a‘1ax07d07p1) :17
otherwise o7, (h1]a, x,d,p) = 0.
X ox(z1]a) =0.

The expected outcome E,+  [Y] of the optimal policy is
0.789. For completeness, we also provide probabilities for
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the transition distribution P(v), P(d|a) and P, (p|d, a) and
the immediate outcome E, ,[Y|a, d, p] in Table 7.

Following the analysis in the main draft, we assume that
parameters of the immediate outcome E, ,[Y |a, d, p] are
provided. We also simplify the optimization procedure and
do not require the learning of P(v), since its parameters
do not affect the optimal policy oy . In all experiments,
our proposed algorithms ofu-dtr, ofu-dtr™, ps-dtr, ps-dtr™
have access to the causal diagram G; while other baseline
algorithms rand, uc-dtr, uc-dtr™ do not. Oblivious of the
causal relationships encoded in G, UC-DTR treat variables
D, P en bloc and focuses on learning the transition prob-
abilities P, (d,p|v). On the other hand, ofu-dtr, ofu-dtr™,
ps-dtr, ps-dtrT utilize the factorization

Py(d, plv) = P(d|a)P:(pld; a),
and learn parameters of P(d|a) and P, (p|d, a) separately.

Among these algorithms, rand, uc-dtr, ofu-dtr and ps-dtr
learn from the scratch; while ofu-dtr™, ps-dtr™ and uc-dtr™
also utilize the observational data. Since P(d|a) is identifi-
able from P(a,z, h,d,p,y), ofu-dtr™ and ps-dir™ estimate
parameters of P(d|a) from the observational data using its
empirical means. Furthermore, ofu-dtr™ and ps-dtr™ com-
pute the causal bounds [a, q,4(P), bz,a,a(p)] Over Py (p|d, a)
from the empirical estimates of P(a,x, h,d, p,y). Obliv-
ious of the causal diagram G, uc-dtr™ derive bounds
P,(d,pla) € [az,q(d,p),bsq(d,p)]. The details of these
causal bounds are given in Table 8.
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A: P(a0|b0,go) = 0.2841 P(a1|b0,go) = 0.5005
P(a0|bo,g1) = 0.4862 P(a1|b0,gl) = 0.4792

P(a0|b17go) = 0.4680 P(a1|b17go) = 0.4077

P( |b1,gl) = 0.0330 P(a1|b17gl) = 0.6757

B: P(by) = 0.5417 P(b;) = 0.4583
C: P(Co|b0,h0) = 0.4103 P(Cﬂbo,ho) = 0.1062
P(colbo,h1) = 0.3080 P(cilbo, h1) = 0.4666

P(Co|b1, h()) = 0.3997 P(Cl|b1, h()) = 0.5083

P(Colbl,hl) = 0.3017 P(Cl|b1,h1) = 0.3389

D: (d0|lo) = 0.4328 (do‘Zl) = 0.2731
E: P(ey|hg) = 0.1473 P(ei|hy) = 0.8849
F: P(f1|b0,d0,60, 0) = 0.1491 P(fl‘bo,do,eo, 1) = 0.9693
P(f1|b0,d0,61, 0) = 0.0177 P(fl‘bo,dmel, 1) = 0.2382
P(f1|b(),d1,€0, 0) = 0.8229 P(fl‘bo,dheo, 1) = 0.9601
P(f1|b0,d1,€1, 0) = 0.2460 P(fl‘bo,dl,el, 1) = 0.8257
P(f1|b1,d0,60, 0) = 0.0937 P(fl‘bl,do,eo, 1) = 0.2567
P(f1|b1,d0,61, 0) = 0.5303 P(fl‘bladm@la 1) = 0.1900
P(f1|b1,d1,60, 0) = 0.4400 P(fl‘bl,dheo, 1) = 0.3264
P(f1|b1,d1,€1, 0) = 0.6326 P(fl\bl,dhel, 1) = 0.3320

G: P(gy) = 0.2546 P(g1) = 0.7454
H: (h1 |Cl0, go) = 0.9456 (I’L1 |CL()7 91) = 0.4239
(h1 |a1,go) = 0.7273 (hl |a1,gl) = 0.6931

(hl |a2, go) = 0.4035 (hl |a2, 91) = 0.4228

I: P(’L()|G, C(),e(),g(),h()) = 0.1576 P(Zo|a C(),C(hg(),hl) = 0.8491
P(igla, co,€0,91,h0) = 0.4218 P(igla,co,€0,91,h1) = 0.6555
P(Zo|a Co,el,go,ho) = 0.4854 P(Zo|a Co,el,go,hl) = 0.7577
P(Zo|a 60,61,91,h0) = 0.9595 P(Zo|a co,el,gl,hl) = 0.0318
P(Zo|a Cl,eo,go,ho) 0.9706 P(Zo|a 61,607g0,h1) 0.9340
P(’Lo|a Cl,eo,gl,ho) = 0.9157 P(Zo|a cl,eo,gl,hl) = 0.1712
P(igla,c1,e1,90,h0) = 0.8003 P(igla,c1,e1,90,h1) = 0.7431
P(Zo|a cl,el,gl,ho) = 0.6557 P(’Lo|a cl,el,gl,hl) = 0.2769
P(Zo|a CQ,Eo,go,ho) = 0.9572 P(7,0|CL Cg,eo,go,hl) = 0.6787
P(igla,ca,e0,91,ho) = 0.7922 P(ipla, ca,€0,91,h1) = 0.7060
P(’Lo|a 62,61,go,h0) = 0.1419 P(Zo|a 02,61,go,h1) = 0.3922
P(ipla,ca,e1,91,h0) = 0.0357 P(ipla,ca,€e1,91,h1) = 0.0462

Table 3: Conditional probability distributions for the Lung cancer staging example described in Fig. 4.

G: P(go) = 0.2546 P(g1) = 0.7454
C: Py,(co) = 0.4055 Py, (co) = 0.3051
Py, (c1) = 0.2904 Py, (c1) = 0.4081

Pho (CQ) = 0.3041 Ph1 (62) = 0.2868

F: Eho,io [F‘Co] = 0.3559 Eh1,io [F|C()] = 0.3759
Eh07i0 [F‘Cl] = 0.4546 Ehhio [F|Cl] = 0.3707
Enoiy|Flea) = 02677  Ep, i [Fles) = 0.3845
Enyi [Fleo] = 0.5406 En, 4, [F|co] 0.5919
Epy i [Flei] = 03854  Ep, i [Fles] = 0.6303
Eho,h [F‘CQ] = 0.6794 Eh1,i1 [F|02] = 0.5276

Table 4: Transition distributions and the immediate outcome for the learning problem of the Lung cancer staging example.
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Table 5: Causal bounds for the transition probabilities P, (c)
cancer staging example.
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0.8003
0.4218
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0.0971
0.8235
0.8491
0.9340
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0.3922
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0.0318
0.0971
0.8235
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0.5530
0.7061
0.4737
0.7513
0.4703
0.6965
0.5530
0.6568
0.8274
0.7061
0.4737
0.5959
0.8551
0.7513
0.4703
0.5934
0.8205
0.6965

[an,g(c), bh,g(c)] in the Lung

= 0.1853
0.9134
0.2785
0.5469
0.1576
0.9706
0.4854
0.0942
0.1419
0.7922
0.9595
0.0357
0.0357
0.6948
0.3171
0.6787
0.7577
0.6555
0.1712
0.2769
0.0462
0.6948
= 03171

Table 6: Conditional probability distributions for the dyspnoea treatment example described in Fig. 4.
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9

)
( )
(poldo, ao)
(poldy, ao)
(poldy, ao)
xg ho (Y |ao, do, po
$0,ho [Yay,do, po]
a;o ho Y |ao, d1, po)
330 ho F/‘aladhpo}
mg ho [Ylay,do, pi1]
zo,ho [Y|ag,d1, pi1]
xo holYla1, dy, p1]
LO hy %Y\ao,dmpo}
mg hl[Y\ao,dlapo]
Eyony [Ylar, dy, po]
xo,hl[y\amdoml]
zo e [Yla1, do, p1]
xo,hl [Y|ao, d1, p1]
Eyon, [Ylar, di,pi1]

0.2633
0.5979
0.8518
0.4846
0.8135
0.7745
0.7220
0.8084
0.7236
0.7906
0.6150
0.8230
0.6837
0.6371
0.6554
0.6530
0.6569
0.6179
0.6545
0.6528
0.6600

P(dolax)
Pxo(p0|d0;a/1)
Py, (poldo, a1)
Py (poldy, ar)
Pz1 (p0|d1aa1)
:cl hoY @0, do, po]
zl,ho [Y|ay,do, po]
acl ho Y |ag, d1, o
xl ho Y '|a1, d1, o)
Tl ho [Y|a0ad07p0]
:,;1 holYla1, do, p1]
CEl,hO [Y|ao, d1, pi1]
11 holYla1, dy, 1]
m hi [Y|ao, do, o
By n,[Ylar, do, po]
zlyhl[Y|aO’d17p0:|
By, py[Ylay, di, po]
zl,hl[y|ao,do,p0]
Eq\ n[Yar, do, pi]
E;\ n,[Ylao, d1,p1]
By n[Ylar, di,pi]

0.4151
0.8206
0.9273
0.7028
0.8874
0.6529
0.4447
0.7990
0.5041
0.7410
0.5552
0.8453
0.6171
0.4717
0.2109
0.6219
0.2731
0.5755
0.2919
0.6731
0.3762

Table 7: Transition distributions and the immediate outcome for the learning problem of the dyspnoea treatment example.
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P.(pld,a):  Gzy.a0.d0(P0) = 0.3920 bzo.a0.do(P0) = 0.7363
Az, a0,do(P0) = 0.2933 be, ag.do(P0) = 0.9490
zg,a1,dy(P0) = 0.0293 bro.ar.do(P0) = 0.9936
Az ,a1,do (pO) = 0.8942 bm,al,do (po) = 0.9299
Azg.a0,d, (P0) = 0.3178 bag.a0,di(P0) = 0.6620
Azy,a0,d: (pO) = 0.2800 bzl,ao,dl (po) = 0.9358
Azg,ay,d (P0) = 0.0251 bzo.ar.d;(P0) = 0.9894
Qzya1,d, (P0) = 0.8557 beyar.d, (Po) = 0.8914
Azg,a0,do(P1) = 0.2637 bro.an.do(P1) = 0.6080
Ay ,a0,d(P1) = 0.0510 ey ap.do(p1) = 0.7067
Azg,ar,do(P1) = 0.0064 bro.ardo(P1) = 0.9707
Qe1ar,do(P1) = 0.0701 bz, .a1.do(P1) = 0.1058
Qzg,a0,d, (P1) = 0.3380 bro,a0,d (P1) = 0.6822
Ay ,a0,d: (pl) = 0.0642 bxl,ao,dl (pl) = 0.7200
Gzg,a1,d,(P1) = 0.0106 bogsards (P1) = 0.9749
Ay ,a1,dy (pl) = 0.1036 brl,al,dl (pl) = 0.1443

P.(d,pla):  azy.a(do,po) = 0.1032 bso.a0 (do,po) = 0.4475

QAzq,a0 (do,po) = 0.0772 ba: ,a0 (d07p0) = 0.7330
aw07al(d07p0) = 0.0122 bmmal(do,po) = 0.9765
azy,a:(dospo) = 0.3712 be,.a, (do,po) = 0.4069
Azg.a0(d1,p0) = 0.2341 bro.ao(di,po) = 0.5783
Azy.a0(d1,p0) = 0.2063 bsya0(di,p0) = 0.8620
g, (d1,p0) = 0.0147 beg.a, (d1,p0) = 0.9790
agzy,0,(d1,p0) = 0.5005 beyay(dispo) = 0.5362
Uzga0(do,p1) = 0.0694 bro.ao(do,p1) = 0.4137
Azy,a0 (d07p1) = 0.0134 bxl,ao (do,pl) = 0.6692
Az ,a, (do, P1) 0.0027 beg.a, (dosp1) = 0.9669
Azy,a; (dO?pl) = 0.0027 bxl ay (d07p1) = 0.0648
Uzg,ao(di,p1) = 0.2490 bro.ao(di,p1) = 0.5932
Uy a0(d1,p1) = 0.0473 beyao(di,p1) = 0.7030
xg,ar (d1,p1) = 0.0062 bro.ay (d1,p1) = 0.9705
Az, o, (d1,p1) = 0.0635 beya, (di,p1) = 0.0992

Table 8: Causal bounds for the transition probabilities P.(p|d,a) € [az.4,4(P),bza.d(p)] and P.(d,pla) €
[ag,a(d, D), be,q(d, p)] in the dyspnoea treatment example.



