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ABSTRACT

Meta-Reinforcement Learning (Meta-RL) focuses on training policies using data
collected from a variety of diverse environments. This approach enables the policy
to adapt to new settings with only a few training steps. While many Meta-RL meth-
ods have demonstrated success, they often rely on the assumption that unobserved
confounders can be excluded a priori. This paper investigates robust Meta-RL in
sequential decision-making, given confounded observational data collected across
multiple heterogeneous environments. We introduce a novel augmentation pro-
cedure, called Causal MAML, which employs partial identification methods to
generate posterior counterfactual trajectories from candidate environments that
align with the confounded observations. These counterfactual trajectories are then
used to find a policy initialization that produces strong generalization performance
in the target domain. Theoretical analysis reveals that our causal Meta-RL approach
is guaranteed to yield a solution that minimizes generalization loss.

1 INTRODUCTION

The capability of rapid learning and generalization across heterogeneous domains is widely regarded
as a hallmark of human intelligence. Meta-learning is a critical approach to exploring how to endow
AI with the capacity for fast adaptation across different environments and learning tasks (Vilalta &
Drissi, 2002). Among various paradigms of meta-learning, meta reinforcement learning (meta-RL)
has emerged as a crucial and popular direction, as data efficiency is essential for achieving optimal
decision-making policies in RL applications. Meta-RL improves data efficiency of RL-powered
decision support systems by leveraging past data collected from interactions with different source
domains to enable fast adaptation to new environments.

A variety of algorithms have been proposed for meta-RL, typically categorized by the form of
inner-loop meta-parameterization: parameterized policy gradients (Finn et al., 2017; Raghu et al.,
2019; Yoon et al., 2018), black box (Duan et al., 2017; Wang et al., 2016; Mishra et al., 2018), and
task inference (Rakelly et al., 2019; Zintgraf et al., 2020; Humplik et al., 2019), to name a few.
While these methods have achieved successes in practice, they rely on the crucial assumption that the
actions observed in the data—along with the subsequent states and rewards they produce—are not
simultaneously influenced by unobserved confounders. If this assumption is violated, the expected
return of the policies becomes non-identifiable, meaning the effects cannot be determined from the
available data. The following example illustrates such challenges in a simple meta-RL task.
Example 1 (Challenges of Unmeasured Confounding). Consider Windy Gridworlds described in
Fig. 1a where the goal of the agent is to go through one of the three corridors and pick up the target
key without touching the lava. For all tasks, their maps are similar except for the position and colors
of the keys; each task is associated with a specific target key. At each time step t, the agent can take
five possible actions Xt: up, down, left, right, or stay-put; there is also a wind Ut blowing
at each grid, following one of five directions: east, south, west, north, or no-wind. If the
agent decides to move, its next state is shifted by both its action and the wind direction through the
mechanism St+1 ← St +Xt + Ut. Otherwise, the agent will stay put (Xt ← stay-put) at its
current position, regardless of the wind direction, i.e., St+1 ← St. In general, the wind tempts to
push the agent toward the lava; the closer the agent gets to the lava, the stronger the wind becomes.

1



(a) Meta-RL task description (b) Generalization performance

Figure 1: (a) Meta-RL tasks in a Windy Gridworld environment. Training and testing tasks are
constructed by randomly generating key colors, key locations, and the target key. (b) few-shot
adaptation performance comparing vanilla RL from scratch (PPO), pretrained RL (PRETRAINED-
PPO), standard meta-learner (MAML), and causally-enhanced meta-learner (CAUSAL-MAML).

The learning agent does not have access to the detailed system dynamics of each environment. Instead,
it can observe an optimal behavioral agent that can sense the wind direction, operating in the training
tasks described in Fig. 1a (left). After training, the learner will then be evaluated in the testing tasks
described in Fig. 1a (left). In this meta-RL problem, the wind direction Ut becomes an unobserved
confounder affecting the observed action and state. We apply several meta-learning algorithms to
this problem, including MAML (Finn et al., 2017), and PPO (Schulman et al., 2017b) pretrained on
observational data. For comparison, we also include a vanilla PPO without pretraining. Simulation
results, shown in Fig. 1b, indicate that neither MAML nor pretrained PPO can outperform the vanilla
PPO. We notice a significant gap between meta-learners and the vanilla one; the confounding bias in
the observed data seems to affect the meta-learners’ performance. ■

Recently, a growing body of literature has explored the nuanced interactions between causal inference
theory and reinforcement learning to address data biases in the optimal decision-making under uncer-
tainty, known as Causal Reinforcement Learning (CRL) (Bareinboim et al., 2024). Several algorithms
have been proposed for various policy learning settings, including online learning (Bareinboim et al.,
2015; Zhang & Bareinboim, 2017), off-policy learning (Kallus & Zhou, 2018; Namkoong et al.,
2020; Etesami & Geiger, 2020; Zhang & Bareinboim, 2025), imitation learning (de Haan et al., 2019;
Ruan et al., 2023; 2024), and curriculum learning (Li et al., 2025b), to name a few. Despite these
progresses, a systematic approach for performing meta-learning across heterogeneous domains with
the presence of unmeasured confounding is still missing. It is unclear how one can obtain a model
initialization with reasonable generalization performance when the training data is contaminated with
confounding bias and potential shifts occur in the system dynamics of the testing environment.

This paper aims to address a significant gap in the field by investigating robust meta-reinforcement
learning (meta-RL) using confounded observational data gathered from various unknown Markov
decision processes with similar yet distinct system dynamics. A key aspect of our approach is to
employ partial causal identification, as discussed by (Balke & Pearl, 1994), alongside the repre-
sentation of causal generative models introduced by (Zhang et al., 2022). More specifically, our
contributions are summarized as follows. (1) We introduce a novel robust meta-RL method that
leverages confounded observational data to predict non-identifiable system dynamics of the source
domains while generating new counterfactual trajectories for training a meta-policy with enhanced
adaptability across confounded environments. (2) We provide theoretical guarantees regarding the
convergence of our method and detail the sample complexity necessary to obtain a good first-order
stationary point approximation for the meta-RL policy. Finally, we validate our proposed algorithm
through comprehensive simulations in synthetic RL environments. Due to space constraints, all
proofs and detailed descriptions of the experimental setups can be found in the Appendix.

Notations. We use capital letters to denote random variables (X), small letters for their values (x),
and calligraphic letters X for the domain of X . For an arbitrary set X , let |X| be its cardinality.
Fix indices i, j ∈ N. Let Xi:j stand for a sequence of variables {Xi, Xi+1, . . . , Xj}; We denote by
P (X) a probability distribution over variables X , and will consistently use P (x) as abbreviations
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for probabilities P (X = x). Finally, 1X=x is an indicator function that returns 1 if an event X = x
holds true; otherwise, it returns a constant 0.

2 META-REINFORCEMENT LEARNING WITH UNMEASURED CONFOUNDING

We will consider the sequential decision-making setting where the agent intervenes on a sequence of
actions to optimize subsequent rewards. Throughout this paper, we will focus on a generalized family
of confounded MDPs (Zhang & Bareinboim, 2016; Kallus & Zhou, 2020; Bennett et al., 2021) where
the unobserved confounders are assumed away a priori, and the learner does not necessarily have the
liberty to control how the behavioral policy generates the observational data.
Definition 1. A Confounded Markov Decision Process (CMDP)M is a tuple of ⟨S,X ,Y,U ,F , P ⟩
where (1) S,X ,Y are, respectively, the spaces of observed states, actions, and rewards; (2) U
is the space of unobserved exogenous noise; (3) F is a set consisting of the transition function
fS : S×X ×U 7→ S , behavioral policy fX : S×U 7→ X , and reward function fY : S×X ×U 7→ Y ;
(4) P is an exogenous distribution over the domain U .
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Figure 2: Causal diagram representing the
data-generating mechanisms in a Confounded
Markov Decision Process.

Throughout this paper, we will consider CMDPs with
a finite horizon H < ∞; we consistently assume
the action domain X and the state domain S to be
discrete and finite; the reward domain Y is bounded
in a real interval [a, b] ⊂ R. A policy π in a CMDP
M is a decision rule π(xt | st) mapping from state to
a distribution over action domain X . An intervention
do(π) is an operation that replaces the behavioral
policy fX in CMDP M with the policy π (Pearl,
2000, Ch. 5). LetMπ be the submodel induced by
intervention do(π). The interventional distribution Pπ(X̄1:H , S̄1:H , Ȳ1:H) is defined as the joint
distribution over observed variables in thus post-interventional submodelMπ ,

Pπ(x̄1:H , s̄1:H , ȳ1:H) = P (s1)

H∏
t=1

(
π(xt | st)T (st, xt, st+1)R(st, xt, yt)

)
(1)

where the transition distribution T and the reward distributionR are given by, for t = 1, . . . , H ,

T (st, xt, st+1) =

∫
U
1st+1=fS(st,xt,ut)P (ut), R(st, xt, yt) =

∫
U
1yt=fY (st,xt,ut)P (ut). (2)

For convenience, we write the reward function R(s, x) as the expected value
∑

y yR(s, x, y). A
realization of states and actions is called a trajectory and can be written as τ = (x̄1:H , s̄1:H , ȳ1:H).

A common objective for an RL agent is to optimize its cumulative return Jπ = Eπ

[∑H
t=1 γ

t−1Yt

]
where 0 ≤ γ ≤ 1 is the discount factor. When detailed parametrizations of the underlying distribution
and function are provided, there exist standard planning methods to compute the optimal policy
(Bellman, 1966; Sutton & Barto, 1998). However, in many practical scenarios, the detailed knowledge
of the environments is often not fully available. In this paper, we consider learning settings where the
agent has access to the observational data in CMDPs, generated by demonstrators following behavioral
policies. Specifically, for every time step t = 1, . . . , H , the environment first draws an exogenous
noise Ut from the distribution P (U); the demonstrator then performs an action Xt ← fX(St, Ut)
following the behavioral policy fX , receives a subsequent reward Yt ← rt(St, Xt, Ut), and moves to
the next state St+1 ← fS(St, Xt, Ut). The observed trajectories are summarized as the observational
distribution P (X̄1:H , S̄1:H , Ȳ1:H),

P (x̄1:H , s̄1:H , ȳ1:H) = P (s1)

H∏
t=1

(∫
U
1st+1=fS(st,xt,ut)1xt=fX(st,ut)1yh=fY (st,xt,ut)P (ut)

)
.

(3)
Fig. 2 shows the causal diagram G (Bareinboim et al., 2022) describing the generative process of
the observational data in CMDPs, where nodes represent observed variables Xt, St, Yt, and arrows
represent the functional relationships fX , fS , fY among them. Exogenous variables Ut are often not
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explicitly shown; bi-directed arrows Xt ←→ Yt and Xt ←→ St+1 (highlighted in blue) indicate the
presence of an unobserved confounder (UC) Ut affecting the action, state, and reward simultaneously.
The presence of these unobserved confounders violates the conditions of no unmeasured confounding
(Robbins, 1985; Bareinboim et al., 2024), leading to possible challenges for various policy learning
tasks, including meta-RL (Finn et al., 2017), which will be the focus of the remainder of this paper.

Meta-Reinforcement Learning. Let B = {Mi}Bi=1 be the set of CMDPs representing different
RL tasks. We assume these CMDPs are drawn from a distribution ρ (which Nature will draw
samples from). The detailed parametrizations of exogenous distribution Pi and structural functions
Fi for these CMDPsMi generally differ from one another. We will consistently use Di

obs to denote
trajectories collected passively observing a demonstrator operating in the modelMi, following the
observational distribution of Eq. (3). Similarly, we use Di

exp to denote the experimental trajectories
collected from performing interventions do(πi) in the modelMi following some policies πi, i.e.,
Di

exp are drawn from the interventional distribution of Eq. (1).

The goal of meta-RL is to learn a policy π that peforms well as an initialization for learning a new
unseen taskMi when the learner has a budget for running a few steps of gradient descent (Finn
et al., 2017). To search over the space of all policies, we assume these policies are parametrized
with θ ∈ Rd. We denote the policy corresponding to parameter θ by π(·; θ) and the expected return
corresponding to this policy π(·; θ) in a modelMi by Ji(θ). For simplicity, we focus on finding an
initialization θ such that, after observing a new CMDPMi, one gradient step would lead to a good
approximation for the minimizer of Ji(θ). We can formulate this learning goal as follows

max
θ

F (θ) := EMi∼ρ [Ji (θ + α∇Ji(θ))] , (4)

where the step size α is a hyper-parameter that controls the magnitude of the gradient ascent update.
In other words, the optimal solution of Eq. (4) would perform well in expectation when the learner is
deployed to a CMDP task and looks at the output after running a single step of gradient descent.

In practice, however, since the detailed system dynamics of the target CMDP Mi are unknown,
one must estimate the policy gradient ∇Ji(θ) from empirical samples collected from the environ-
ment. Unbiased estimation methods have been proposed (Finn et al., 2017; Fallah et al., 2020) to
approximate the gradient when the learner could directly intervene in the environment. Specifically,
the learner will intervene in the CMDPMi, collect a batch of experimental data Di

exp, evaluate the
stochastic gradient ∇̃Ji(θ,Di

exp) from the batch, and solve for the optimal solution θ of Eq. (4) by
replacing the gradient∇Ji(θ) with ∇̃Ji(θ,Di

exp). When ∇̃Ji(θ,Di
exp) is an unbiased estimator, this

meta-RL approach has demonstrated success and achieved an optimal initialization point θ∗.

Figure 3: Comparing two pos-
sible routes (long and short) to
reach the target green key.

However, challenges could arise when the agent does not have access
to directly intervene in the taskMi. Without realizing the discrep-
ancy between the observational Di

obs and experimental data Di
exp, a

naive learner might use Di
obs as if it were Di

exp, and proceed with
the original MAML method. This procedure leads to the following
optimization program:

max
θ

F̃ (θ) = EMi∼ρ

[
EDi

obs

[
Ji

(
θ + α∇̃Ji(θ,Di

obs)
)]]

. (5)

Among the above quantities, ∇̃Ji(θ,Di
obs) is the stochastic gradi-

ent evaluated from the observational data Di
obs. Generally, when

the unobserved confounding exists, the underlying system dynamics are underdetermined (i.e.,
non-identifiable) from the observational data (Kallus & Zhou, 2018; Zhang & Bareinboim, 2025).
Consequently, the stochastic gradient ∇̃Ji(θ,Di

obs) is no longer an unbiased estimate of∇Ji(θ), and
solving the optimization in Eq. (5) yields a solution θ with sub-optimal behavior.
Example 2 (Windy Gridworlds continued). Consider the meta-reinforcement learning task of windy
gridworlds described in Fig. 1a. In this scenario, the wind direction Ut serves as an unobserved
confounder that influences the observed action Xt, the subsequent reward Yt, and the next state St+1.
This introduces spurious correlations in the observational data, causing some trajectories to appear
associated with higher returns. For example, Fig. 3 illustrates two observed trajectories leading to the
target green key. The shorter purple route is risky, as it requires navigating a narrow passage between
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lava tiles. The demonstrator, able to sense the wind direction, can stop when pushed toward the lava
and thus consistently take the short route to reach the key. However, the learner cannot sense the
wind and cannot choose the right moment to stop. If the learner naively updates its policy using the
stochastic gradient ∇̃Ji(θ,Di

obs) derived from the observational data, it will not accurately recover
the actual gradient∇Ji(θ). Instead, it will overestimate the value of the risky short route trajectories,
leading to sub-optimal performance. In contrast, the learner should consider taking the longer but
safer upper passage, which is more reliable even in windy conditions. ■

M̃1

M̃2 M̃3

M1

M2 M3

M̂1

M̂2 M̂3

θ
θ̂

θ̃

Figure 4: Comparing the optimal solu-
tion θ of Eq. (4) and solutions obtained
by naive meta-RL θ̃ (Eq. (5)) and the
causally enhanced approach θ̂ (Eq. (6)).

To better highlight the difference between the optimal pol-
icy initialization for meta-RL in Eq. (4) and the biased
solution obtained by naively applying standard MAML
in Eq. (5) with confounded observations, we consider an
example with three equally likely CMDPsM1,M2,M3;
see Fig. 4. For each sampled CMDP Mi, the dashed
shade represents the equivalence class of environments
M̃i compatible with the same observational data. When
unmeasured confounding exists, one cannot distinguish be-
tween the actual taskMi and the other task M̃i, and these
models could have significantly different system dynamics.
If one is not aware of this difference and naively applies
MAML gradient update using confounded observations,
the algorithm will converge to the alternative task M̃i in
the equivalence. When the confounding bias is significant
and M̃i deviates from the actual taskMi, the obtained
solution θ̃ could deviate from the optimal θ and fail to generalize to all environments.

3 CONFOUNDING ROBUST META-REINFORCEMENT LEARNING

A natural question arising at this point is how to perform robust meta-RL in the face of unmeasured
confounding in the observational data. Our analysis so far seems to suggest that when the no-
unmeasured-confounding condition does not hold, it is infeasible to obtain an unbiased stochastic
gradient for the policy update, preventing the recovery of the optimal meta-policy in Eq. (4). For the
remainder of this paper, we will show that this is not the case by proposing a novel confounding-robust
meta-RL algorithm leveraging counterfactual reasoning and providing theoretical guarantees that it
recovers the optimal meta-policy under some common conditions.

Note that CMDP tasksMi are drawn from a prior distribution ρ. Our discussion begins with a meta-
RL approach assuming access to an oracle capable of sampling the posterior tasks M̂i ∼ ρ(M | Di

obs)
conditioned on the observational dataDi

obs. We will then relax this assumption by providing a practical
Monte-Carlo approach to sample the posterior distribution. Specifically, after observing a CMDP
taskMi and receiving the observational data Di

obs, instead of evaluating the gradient ∇Ji(θ) from
confounded observations, our causal learner will sample an alternative model M̂i compatible with the
same observations from the oracle ρ(M | Di

obs). The causal meta-learner will then interact with this
posterior model M̂i and collect the subsequent experimental data D̂i

exp. Finally, the causal learner
performs the stochastic gradient update ∇̂Ji(θ, D̂i

exp) using the posterior experimental data. This
augmented meta-RL procedure could be formalized as the following optimization program:

max
θ

F̂ (θ) := EMi∼ρ

[
EDi

obs

[
ED̂i

exp

[
Ji

(
θ + α∇̂Ji(θ, D̂i

exp)
)]]]

. (6)

In the above equation, computing the posterior experimental data D̂i
exp conditioned on the observa-

tional trajectories Di
obs can be seen as performing a counterfactual query. That is, “given the observed

trajectories (collected from the demonstrator), what would the outcome be had I personally taken the
same route as the observed one (or exploring an alternative route)?” Henceforth, we will consistently
refer to this augmentation step as the counterfactual bootstrap. We will later show that this bootstrap-
ping step effectively mitigates the influence of unobserved confounders, enabling the learner to obtain
the optimal policy initialization. Fig. 4 illustrates this intuition by comparing the solution θ̂ of Eq. (6)
to the optimal solution of Eq. (4). Here, θ̂ is a meta-policy computed using the counterfactual CMDPs
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drawn from the oracle M̂i ∼ ρ(M | Di
obs). Since the oracle provides access to the posterior over

all tasks conditioned on observed trajectories, the solution θ̂ is a consistent estimate of the optimal
solution in expectation, thereby leading to a reasonable generalization performance.

Counterfactual Bootstrap. The causal meta-reinforcement learning (meta-RL) method discussed
earlier depends on having oracle access to the posterior distribution ρ(Mi | Di

obs), which is condi-
tioned on the confounded observations. However, evaluating this posterior can be difficult in practice
because we lack detailed information about the prior distribution ρ(M) over potential tasks. One
possible solution is to define a non-informative prior ρ̂ to serve as an approximation of the actual prior
ρ. However, constructing such a prior ρ̂ is complicated, as we do not know the specific parametric
forms of the distribution P and the structural functions F for the underlying CMDPs. To address
this challenge, we will utilize a parametric family of canonical causal models introduced by (Zhang
et al., 2022), which limits the cardinality of the latent exogenous domain based on the cardinality of
the observed state-action space. Formally, the canonical parameterization of CMDPs is provided as
follows.

Definition 2. A canonical CMDPM is a CMDP ⟨S,X ,Y,U ,F , P ⟩ where its the cardinality of the
exogenous domain U is bounded by |U| ≤ 2(|S × X |+ |S × X × S|+ |S × X × Y|).

For a canonical CMDP, the latent cardinality of the exogenous domain is bounded by a linear function
of the cardinality of the observed state-action space. For standard CMDPs with discrete states and
actions, the latent exogenous domain is also discrete and finite.1 A critical property of canonical
causal models is that they preserve the values of all the observational and interventional distributions
defined by the original, unrestricted causal models using only a finite number of latent states. The
following corollary follows immediately from (Zhang et al., 2022, Theorem 2.4).

Corollary 1. For an arbitrary CMDP M, there exists a canonical CMDP N such that for any
finite horizion H <∞ and any policy π, P (x̄1:H , s̄1:H , ȳ1:H ;M) = P (x̄1:H , s̄1:H , ȳ1:H ;N ) and
Pπ(x̄1:H , s̄1:H , ȳ1:H ;M) = Pπ(x̄1:H , s̄1:H , ȳ1:H ;N ).

Corol. 1 implies that for meta-RL tasks from the observational data over discrete domains, one
could assume the latent states of the underlying CMDPs to be discrete and finite without loss
of generality. This latent space reduction simplifies the construction of the approximate prior ρ̂.
Specifically, we will follow the procedure of (Zhang et al., 2022) and assign a Dirichlet prior over
the exogenous probabilities P (U); structural functions F are uniformly drawn from a finite set of
functional mappings between discrete domains. Provided with the prior ρ̂(M) over CMDP tasks and
observed trajectories Di

obs in a modelMi, there exist general Monte-Carlo Markov Chain algorithms
to sample posterior tasks ρ̂(Mi | Di

obs), including Gibbs sampling (Gelfand & Smith, 1990) and
Hamiltonian Monte Carlo (HMC) (Duane et al., 1987).

Causal MAML. We are now ready to introduce our causal meta-RL approach for confounded
observations. Details of our algorithm, called CAUSAL-MAML, are described in Alg. 1. Similar to
many gradient-based model agnostic meta-learning methods (Finn et al., 2017; Fallah et al., 2020;
2021), its training procedures contain an inner loop and an outer loop. More specifically, at Line 3,
Nature (e.g., a system designer) selects a collection of source meta-training CMDP tasks B = {Mi}
following the distribution ρ. For every CMDPMi in the inner training loop, the learner observes its
trajectories (generated by a demonstrator) and obtains the observational data Di

obs (Line 5). It then
constructs an approximate posterior ρ̂(M | Di

obs) and draws an alternative environment M̂i from
the posterior, following the counterfactual bootstrap procedure described previously. The learner
simulates interventions following the current policy estimate π(· | ·; θ) in the sampled CMDP M̂i

and collects experimental trajectories D̂i
exp,in (Line 7). It then computes the inner stochastic gradient

∇̂θJi(θ, D̂i
exp,in) using the collected experimental trajectories. Formally, given finite experimental

1For continuous rewards Yt bounded in a compact domain Y , one could always represent their first moments
(e.g., reward function R(st, xt)) using a binary Bernoulli distribution (Agrawal & Goyal, 2012). The reward
domain Y could be further discretized to represent higher moments.
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Algorithm 1: CAUSAL-MAML
1 Require: Initial parameter θ, an approximate prior over CMDPs ρ̂(M)
2 while not done do
3 Nature samples a batch of CMDP tasks B = {Mi}Bi=1 from distribution ρ(M)
4 for all taskMi ∈ B do
5 Sample observation trajectories Di

obs in environmentMi

6 Sample a new environment M̂i from the posterior ρ̂(M | Di
obs)

7 Sample experimental trajectories D̂i
exp,in using agent policy π(· | ·; θ) in environment M̂i

8 Compute inner gradient ∇̂θJi(θ, D̂i
exp,in) using dataset D̂i

exp,in following Eq. (7)
9 Set adapted parameter θi = θ + α∇̂θJi(θ, D̂i

exp,in)

10 Sample experimental dataset Di
exp,o using adapted policy π(· | ·; θi) in environment M̂i

11 end
12 Update parameter θ ← θ + β∇̂θF (θ) following Eq. (8)
13 end

trajectories D̂exp, we define the stochastic gradient ∇̂θJi(θ, D̂) as follows:

∇̂θJi(θ, D̂) =
1

|D̂|

∑
τ∈D̂

H∑
t=0

∇θ log π(xt | st; θ)Ψt, where Ψt =

H∑
t′=t

γt′Ri(st′ , xt′). (7)

At Lines 9-10, the learner updates the parameter θi of an adapted policy π(· | ·; θi) and uses this policy
to subsequently interact with the sampled CMDP M̂i to generate outer-loop experimental trajectories
D̂i

exp,o. After completing the inner training loop for every source task, the learner finally enters the
outer-loop update and adjusts the parameter θ using the gradient of meta-RL objective function
∇̂θF (θ) evaluated at the adapted parameter θi and the outer-loop trajectories D̂i

exp,o. Formally, the
stochastic gradient of the meta-objective function is defined as follows:2

∇̂θF (θ) =
1

|B|
∑
i∈B

((
I + α∇̂2

θJi(θ, D̂i
exp,in)

)
∇̂θJi

(
θi, D̂i

exp,o

)

+Ĵi

(
θi, D̂i

exp,o

) ∑
τ∈D̂i

exp,in

H∑
t=0

∇θ log π(xt | st; θ)
)
.

(8)

Among quantites in the above equation, I is an identity matrix; Ĵi(θi, D̂i
exp,o) is the empirical mean

estimate of the expected return for a policy π(· | ·; θi) evaluated from outer-loop trajectories D̂i
exp,o.

∇̂2
θJi(θ, D̂) is policy Hessian estimate for sampled CMDP M̂i defined as

∇̂2
θJi(θ, D̂) =

1

|D̂|

∑
τ∈D̂

(( H∑
t=0

∇θ log π(xt | st; θ)Ψt

)
×∇θ log pi(τ ; θ)

+

H∑
t=0

∇2
θ log π(xt | st; θ)Ψt

) (9)

with the interventional probability pi(τ ; θ) = Pπ(·|·;θ)(τ). It can be verified that if all the gradients
and Hessians in the outer-loop update were exact, then the outcome of the update would be equivalent
to the outcome of the gradient ascent update for the objective function F̂ (θ) (Fallah et al., 2021).

3.1 CONVERGENCE OF CAUSAL MAML

For the remainder of this section, we will analyze the asymptotic properties of our proposed CAUSAL-
MAML algorithm and provide theoretical guarantees for the computational complexity of its conver-

2For simplicity, we assume that all experimental trajectories D̂i
exp,in and D̂i

exp,o have the same size D.
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gence. Our discussion begins with introducing some necessary conditions on the smoothness of the
hypothesis class containing the candidate policy networks.

Assumption 1. The gradient and Hessian of logarithmic policy are bounded; that is, there exist
constants G,L ∈ R such that, for any state s ∈ S, action x ∈ X , and parameter θ ∈ Rd, we have
∥∇θ log πθ(x | s; θ)∥ ≤ G and ∥∇2

θ log π(x | s; θ)∥ ≤ L.

Assumption 2. The Hessian of logarithmic policy is K-Lipschitz continuous; that is, there exists a
real constant K > 0 such that for all parameters θ1, θ2 ∈ Rd, state s ∈ S and action x ∈ X , we have
∥∇2

θ log π(x | s; θ1)−∇2
θ log π(x | s; θ2)∥ ≤ K∥θ1 − θ2∥.

Assumption 1 states that the gradient and Hessian of the logarithmic policy distribution are bounded,
and Assumption 2 implies that the Hessian of the logarithmic policy distribution is Lipschitz contin-
uous. In practice, these assumptions generally hold for some common choices of hypothesis class
of candidate policies, including neural networks with softmax layers (Bridle, 1990) and smooth
activation functions (Dugas et al., 2000).

In practice, the meta-RL problem of Fig. 4 is generally non-convex. Due to this reason, we will focus
on finding a policy initialization that satisfies the first-order optimality condition. Formally, a solution
θϵ ∈ Rd is called an ϵ-approximate first-order stationary point (ϵ-FOSP), if it satisfies ∥∇F (θϵ)∥ ≤ ϵ,
i.e., it approximates a local optimum of the meta-objective function. Our following result establishes
the convergence of the proposed causal meta-learner.

Theorem 1. Consider the case that α ∈ (0, 1/ηH ] and β ∈ (0, 1/LH ]. For any ϵ ∈ (0, 1), CAUSAL-
MAML finds a solution θϵ satisfying E[∥∇θF (θϵ)∥2] ≤ 2L2

GLHβB−1D−1 + ϵ2, after running at
most for O(1)(b− a)(1− γ)−1β−1 min(ϵ−2, BDL−2

G L−1
H β−1/2) iterations.

Thm. 1 implies that our proposed causal meta-learner is guaranteed to find a local-optimum solution
for the policy initialization of Fig. 4 with a sufficient number of iterations and trajectories. It also
allows us to characterize the computational complexity of CAUSAL-MAML for finding an ϵ-FOSP
solution. Fix an error rate ϵ > 0. The convergence condition of Thm. 1 implies two possible settings:
(1) when β = 1/LG, our CAUSAL-MAML requires at least O(ϵ−2) iterations, with a total number
of ϵ−2 trajectories per iteration to reach an ϵ-FOSP solution; and (2) β = ϵ−2, CAUSAL-MAML
requires at least a total number of O(ϵ−4) iterations, with O(1) trajectories per iteration. In both
cases, the total number of stochastic gradient evaluations is O(ϵ−4).

4 EXPERIMENTS

(a) Go-To-Door

(b) Go-To-Goal

Figure 5: Meta-RL tasks in the
windy Gridworld environments.

In this section, we validate our confounding robust meta-RL
approach in the Windy Gridworlds (Li et al., 2025a; Zhang &
Bareinboim, 2025), which is adapted from the Minigrid environ-
ment (Chevalier-Boisvert et al., 2023). In these environments,
the agent is required to navigate around impassable terrain (e.g.,
walls and lava) and interact with specific objects (e.g., keys and
doors). Winds are introduced in the passages between lava as un-
observed confounders, affecting the agent’s movements. For each
task, interactive objects are assigned colors from a set of four;
one color is designated as the unique target, while the remaining
three serve as distractors. The source domain uses the palette
{red, green, blue, purple}, while the target domain expands this
palette with two additional colors, {yellow, gray}. We evaluate
our approach on three meta-RL tasks: Pick-Up-Key (Experiment
1), Go-To-Door (Experiment 2), and Go-To-Goal (Experiment 3).
Each environment contains four tasks in the source domain and
two tasks in the target domain.

We assess the performance of algorithms by their ability to adapt
to target tasks, specifically, quantified by the accumulated reward
obtained during adaptation. For all baselines, the meta-policy is adapted to the target task using
Proximal Policy Optimization (PPO) (Schulman et al., 2017a). Our method is compared to three
baselines: (a) PPO: random initialization of meta-policy parameters; (b) MAML: training the
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meta-policy on demonstrator data using MAML; and (c) PRETRAINED-PPO: pretraining the meta-
policy on demonstrator data. Implementation details for benchmark algorithms are provided in
Appendix C.1. Furthermore, we present a comparison between pretraining over counterfactual
environments generated from demonstrator data and our proposed method in Appendix C.2.

The policy model for the actor-critic network consists of a two-headed multilayer perceptron (MLP).
Both the actor and critic heads share a fully connected layer with 64 units, and each head features a
single hidden layer MLP with 64 hidden units. During the meta-training stage, we train the model for
300 iterations. In the adaptation stage, we select five tasks from the target domain, train for 4, 000
iterations, and calculate the average accumulated reward across the tasks. Each iteration uses 512
frames from the environments.

Experiment 1. In the first experiment, the agent is trained to navigate in a 15× 9 grid and to find
the key of the target color. Details of this meta-RL task have been described in Fig. 1a. Keys are
uniformly generated within the subgrid {(c, r) | 7 ≤ c ≤ 13, 4 ≤ r ≤ 7}. The wind distribution in
the passages between lava is 0.1, 0.35, 0.1, 0.35, 0.1 for rightward, downward, leftward, upward, and
staying in place, respectively. In other cells, the distribution is 0.01, 0.01, 0.01, 0.01, 0.96, indicating
negligible wind effects. If the agent enters lava, a negative reward is received, while approaching
the target key yields a positive reward. Simulation results in Fig. 1b suggest that confounding robust
Meta-RL adapts more quickly and exhibits lower variance during adaptation compared to PPO.
MAML and PRETRAINED-PPO fail to learn useful information from confounded data.

(a) Go-To-Door

(b) Go-To-Goal

Figure 6: Cumulative returns com-
paring PPO from scratch, PRE-
TRAINED PPO, standard MAML,
and proposed CAUSAL-MAML.

Experiment 2. In the second experiment, the agent is re-
quired to pick up the target color key and open the correspond-
ing door in a 15 × 9 grid. The environment is illustrated in
Fig. 5a. Key locations are uniformly generated from the set
{(7, 2), (9, 1), (9, 4), (9, 7)}, and door locations are uniformly
generated from the set {(13, 1), (13, 3), (13, 5), (13, 7)}. The
wind distribution in the lava passage and other cells is identical
to the description in Experiment 1. Entering lava produces a
negative reward. Before obtaining the target key, approach-
ing it yields a positive reward; after acquiring the target key,
approaching the corresponding door provides a positive re-
ward. As shown in Fig. 6a, our proposed CAUSAL-MAML
also adapts more quickly than PPO while demonstrating lower
variance, while MAML and PRETRAINED-PPO are affected
by confounded data and fail to discover the correct path.

Experiment 3. In the third experiment, the agent should
pick up the target color key, open the corresponding door,
and reach the goal in a 18 × 9 grid. An illustration of the
environment is provided in Fig. 5b. Key locations are uni-
formly generated from the set {(7, 2), (9, 1), (9, 4), (9, 7)},
door locations are uniformly generated from the set
{(13, 1), (13, 3), (13, 5), (13, 7)}, and the goal are generated
within the subgrid {(c, r) | 13 ≤ c ≤ 16, ; 6 ≤ r ≤ 7}. The
wind distribution is the same as that in Experiment 1. Before
obtaining the target key, approaching it yields a positive reward;
after acquiring the target key, approaching the goal provides a
positive reward. Fig. 6b indicates that our proposed CAUSAL-MAML outperforms PPO and MAML
in terms of adaptation speed and variance reduction. MAML is able to identify the correct path,
while PRETRAINED-PPO is unable to converge to the correct path.

5 CONCLUSION

This paper investigates a vulnerability in existing meta-reinforcement learning (meta-RL) algo-
rithms: the challenges of unmeasured confounding in observational data. We demonstrate that when
confounders are present, the standard condition of unbiased gradient estimation no longer holds,
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misguiding agents to learn flawed and potentially harmful policies. To address this issue, we propose
a novel method for confounding-robust meta-RL. Our framework provides a principled approach to
learning from confounded data by first employing causal inference techniques to reason about the
possible counterfactual environments compatible with the observational data. Specifically, we train
a meta-policy through direct interactions with newly generated counterfactual environments. This
approach ensures that the agent learns from unbiased experiences, enabling it to acquire robust and
generalizable skills. Additionally, we provide a theoretical analysis that guarantees the convergence
of our algorithm. Future research could explore extending this framework to continuous action spaces
and more complex, high-dimensional environments.
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A SAMPLING DETAILS OF COUNTERFACTUA CMDPS FROM THE POSTERIOR
DISTRIBUTION

As discussed in the main text, CAUSAL-MAML relies on generating alternative environments
sampled from the posterior distribution ρ̂(M | Di

obs) to enable counterfactual reasoning. In this
section, we provide additional details on how to construct and sample such virtual environments.

First, we define the behavioral policy πB as the expectation over the exogenous variable U :

πB(s, x) =

∫
u

1x=fX(s,u)P(u) du. (10)

The sampled virtual CMDP M̂i inherits the state space S , action space X , rewards Y , and exogenous
noise U from the original CMDPMi. Exogenous distribution P̂ is estimated from the observation
data Di

obs. The transition distribution T̂i and expected reward function R̂i are sampled from a
posterior-informed range:

T̂i(s, x, s′) ∈ [Ti(s, x, s′)πi
B(s, x), Ti(s, x, s′)πi

B(s, x) + πi
B(s,¬x)] (11)

R̂i(s, x) ∈ [Ri(s, x)π
i
B(s, x) + aπi

B(x,¬x), Ri(s, a)π
i
B(s, x) + bπi

B(s,¬x)] (12)

where πB(s,¬x) = 1 − πB(s, x); the original transition distribution T is estimated from the
observational distribution T (s, x, s′) = P (St+1 = s′|St = s,Xt = x); the original expected reward
function is given by R(s, x) = E[Yt | St = s,Xt = x].

B PROOF DETAILS

In this section, we provide the detailed proof of the convergence of our CAUSAL-MAML method.
We begin by presenting two lemmas that serve as the foundation of the proof. We then outline the
proof process for these lemmas, followed by the proof of the main theorem.

B.1 DETAILS OF CONVERGENCE PROOF

Establishing the Lipschitz property of the meta-objective function requires information from the task-
specific objective functions Ji(θ), along with their gradient ∇θJi(θ) and Hessian matrix ∇2

θJi(θ).
Referring to the results in (Shen et al., 2019), we state the following lemmas on the Lipschitz property
of the accumulated reward function Ji(θ).

Lemma 1. Define R = max(|a|, |b|). Suppose Assumptions 1 and 2 hold, we have:

(i) Ji(θ) is smooth with parameters ηG := RG
(1−γ)2 ; that is, for any parameter θ ∈ Rd, we have

∥∇θJi(θ)∥ ≤ ηG.

(ii) ∇θJi(θ) is smooth with parameters ηH := (H+1)RG2+RL
(1−γ)2 ; that is, for any parameter

θ ∈ Rd, we have ∥∇2
θJi(θ)∥ ≤ ηH .

(iii) ∇2
θJi(θ) is smooth with parameters ηρ := 2(H+1)RGL+RK

(1−γ)2 ; that is, for any parameter
θ1, θ2 ∈ Rd, we have ∥∇2

θJi(θ1)−∇2
θJi(θ2)∥ ≤ ηρ∥θ1 − θ2∥.

Lemma 1 demonstrates that the Lipschitz parameters of the task-specific objective function Ji(θ),
its gradient ∇θJi(θ), and its Hessian ∇2

θJi(θ) are ηG, ηH , ηρ, respectively. Based on the result
in Lemma 1, we can now demonstrate the Lipschitz property of the meta-objective function. The
stochastic gradient of the meta-objective function is defined as follows:
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∇̂θF (θ) =
1

|B|
∑
i∈B

((
I + α∇̂2

θJi(θ, D̂i
exp,in)

)
∇̂θJi

(
θi, D̂i

exp,o

)

+Ĵi

(
θi, D̂i

exp,o

) ∑
τ∈D̂i

exp,in

H∑
t=0

∇θ log π(xt | st; θ)
)
.

(13)

Referring to the result in (Fallah et al., 2021), we state the following conclusion on Lipschitz property
of meta-objective function F (θ).
Lemma 2. Consider the meta-objective function defined in Eq. (6) for the case that α ∈ (0, 1

ηH
].

Suppose Assumptions 1 and 2 are satisfied. Then, we have:

(i) ∇̂θF (θ) is bounded by parameter LG = 2RG
(1−γ)2 + D(H+1)RG

1−γ ; that is, for any parameter

θ, any task subset B, and any experimental trajectory batch D̂i
exp, we have ∥∇̂θF (θ)∥ ≤ LG.

(ii) ∇̂θF (θ) is smooth with parameter LH = 4ηH + αηGηρ +D(H + 1)R( L
1−γ + 2G2

(1−γ2) );

that is, for any parameter θ, any task subset B, and any experimental trajectory batch D̂i
exp,

we have ∥∇̂2
θF (θ)∥ ≤ LH .

Lemma 2 illustrates the upper bound and the Lipschitz parameter of the stochastic gradient ∇̂θF (θ).

B.2 PROOF OF LEMMA 1

In this section, we show the proof details of Lemma 1.

Proof of (i):

First, we note that∥∥∥∥∥
H∑
t=0

∇θ log log π(xt | st; θ)Ψt

∥∥∥∥∥ ≤
H∑
t=0

∥∇θ log log π(xt | st; θ)∥|Ψt|

≤
H∑
t=0

|Ψt|G.

The accumulated reward is

|Ψt| =

∣∣∣∣∣
H∑

t′=t

γtRi(st′ , xt′)

∣∣∣∣∣
≤ R

H∑
t′=t

γt′

≤ Rγt′

1− γ
.

Consequently, we have ∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ)Ψt

∥∥∥∥∥ ≤ RG

H∑
t=0

γt′

1− γ

≤ RG

(1− γ)2
.

Proof of (ii):
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Note that∥∥∥∥∥(
H∑
t=0

∇θ log π(xt | st; θ)Ψt)∇θ log qi(τ ; θ)
T +

H∑
t=0

∇2
θ log π(xt | st; θ)Ψt

∥∥∥∥∥
≤

∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ)Ψt)∥∥∇θ log qi(τ ; θ)

∥∥∥∥∥+

∥∥∥∥∥
H∑
t=0

∇2
θ log π(xt | st; θ)Ψt

∥∥∥∥∥ .
First, we consider the bound on ∥∇θ log qi(τ ; θ)∥:

∥∇θ log qi(τ ; θ)∥ =
H∑
t=0

∥∇θ log π(xt | st; θ)∥

≤ (H + 1)G

According to the result in Lemma 1(i),∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ)Ψt

∥∥∥∥∥ ≤ RG

(1− γ)2
.

Then, we consider the bound on ∥
∑H

t=0∇2
θ log π(xt | st; θ)Ψt∥:∥∥∥∥∥

H∑
t=0

∇2
θ log π(xt | st; θ)Ψt

∥∥∥∥∥ ≤
H∑
t=0

∥∇2
θ log π(xt | st; θ)∥|Ψt|

≤ RL

H∑
t=0

γt′

1− γ

≤ LR

(1− γ)2
.

Consequently, we have∥∥∥∥∥(
H∑
t=0

∇θ log π(xt | st; θ)Ψt)∇θ log qi(τ ; θ)
T +

H∑
t=0

∇2
θ log π(xt | st; θ)Ψt

∥∥∥∥∥
≤ (H + 1)RG2 +RL

(1− γ)2
.

Proof of (iii): Note that

∥∇2
θJi(θ1)−∇2

θJi(θ2)∥

≤

∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ1)Ψt∇θ log qi(τ ; θ1)
T −

H∑
t=0

∇θ log π(xt | st; θ2)Ψt∇θ log qi(τ ; θ2)
T

∥∥∥∥∥
+

∥∥∥∥∥
H∑
t=0

∇2
θ log π(xt | st; θ1)Ψt −

H∑
t=0

∇2
θ log π(xt | st; θ2)Ψt

∥∥∥∥∥
≤ ∥∇θ log qi(τ ; θ)∥

∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ1)Ψt −
H∑
t=0

∇θ log π(xt | st; θ2)Ψt

∥∥∥∥∥
+

∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ1)Ψt∥∥∇θ log qi(τ ; θ1)−∇θ log qi(τ ; θ2)

∥∥∥∥∥
+

∥∥∥∥∥
H∑
t=0

∇2
θ log π(xt | st; θ1)Ψt −

H∑
t=0

∇2
θ log π(xt | st; θ2)Ψt

∥∥∥∥∥ .
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First, we consider the Lipschitz parameter of
∑H

t=0∇θ log π(xt | st; θ)Ψt:∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ1)Ψt −
H∑
t=0

∇θ log π(xt | st; θ2)Ψt

∥∥∥∥∥
≤

H∑
t=0

∥∇θ log π(xt | st; θ1)−∇θ log π(xt | st; θ2)∥|Ψt|.

According to Assumption 1, the gradient of logarithmic policy is smooth with parameter L, i.e.,

∥∇θ log π(xt | st; θ1)−∇θ log π(xt | st; θ2)∥ ≤ L∥θ1 − θ2∥.

Therefore, ∥∥∥∥∥
H∑
t=0

∇θ log π(xt | st; θ1)Ψt −
H∑
t=0

∇θ log π(xt | st; θ2)Ψt

∥∥∥∥∥
≤ L∥θ1 − θ2∥

H∑
t=0

Rγt′

1− γ

≤ RL

(1− γ)2
∥θ1 − θ2∥.

It is obvious that ∇θ log qi(τ ; θ) is Lipschitz with parameter (H + 1)L, i.e.,

∥∇θ log qi(τ ; θ1)−∇θ log qi(τ ; θ2)∥ ≤ (H + 1)L∥θ1 − θ2∥.

According to Assumption 2, wherein the gradient of the logarithmic policy is smooth with parameter
K, we have a similar conclusion as in the above proof:∥∥∥∥∥

H∑
t=0

∇2
θ log π(xt | st; θ1)Ψt −

H∑
t=0

∇2
θ log π(xt | st; θ2)Ψt

∥∥∥∥∥ ≤ RK

(1− γ)2
∥θ1 − θ2∥.

From the proof of Lemma 1(ii), we know the bound ∥∇θ log qi(τ ; θ)∥ ≤ (H + 1)G. The result in
Lemma 1(i) shows that ∥

∑H
t=0∇θ log π(xt | st; θ)Ψt∥ ≤ RG

(1−γ)2 . Finally, these yield the result that

∥∇2
θJi(θ1)−∇2

θJi(θ2)∥ ≤
(
(H + 1)G

RL

(1− γ)2
+

RG

(1− γ)2
(H + 1)L+

RK

(1− γ)2

)
∥θ1 − θ2∥

=
2(H + 1)RGL+RK

(1− γ)2
∥θ1 − θ2∥.

B.3 PROOF OF LEMMA 2

In this section, we show the proof details of Lemma 2.

Proof of (i): We first note that

∥∇θF (θ)∥ = ∥(I + α∇̂2
θJi(θ, D̂i

exp))∇θJi(θ + α∇̂Ji(θ, D̂i
exp))

+ Ji(θ + α∇̂Ji(θ, D̂i
exp))

∑
τ∈D̂i

exp

H∑
t=0

∇θ log πθ(xt | st; θ)∥

≤ ∥I + α∇̂2
θJi(θ, D̂i

exp)∥∥∇θJi(θ + α∇̂Ji(θ, D̂i
exp))∥

+ ∥Ji(θ + α∇̂Ji(θ, D̂i
exp))∥

∥∥∥∥∥∥∥
∑

τ∈D̂i
exp

H∑
t=0

∇θ log πθ(xt | st; θ)

∥∥∥∥∥∥∥ .
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Lemma 1 implies that ∥∇θJi(θ − α∇̂Ji(θ, D̂i
exp))∥ ≤ ηG. For any parameter θ, the accumulated

reward function is bounded by

∥Ji(θ)∥ = ∥
H∑
t=0

γtRi(st, xt)]∥

≤ R

H∑
t=0

γt

≤ R

1− γ
.

Recalling Assumption 1, we have that ∥
∑

τ∈D̂i
exp

∑H
t=0∇θ log πθ(st, xt; θ)∥ is bounded by GD(H +

1). (I + α∇̂2
θJi(θ, D̂i

exp)) is bounded by 1 + αηH . Relying on the assumption α ≤ ηH , we know
(1 + αηH) ≤ 2. Now, we know that the gradient of the objective function ∥∇θF (θ)∥ is bounded by
2ηG + (H+1)DRG

1−γ = 2RG
(1−γ)2 + D(H+1)RG

1−γ .

Proof of (ii):

The Lipschitz parameter of ∇̂θF (θ) is the sum of the Lipschitz pa-
rameters of (I + α∇̂2

θJi(θ, D̂i
exp))∇θJi(θ + α∇̂θJi(θ, D̂i

exp)) and Ji(θ +

α∇̂Ji(θ, D̂i
exp))

∑
τ∈D̂i

exp

∑H
t=0∇θ log π(xt | st; θ). Next, we analyze each item separately.

Consider the Lipschitz parameter of (I + α∇̂2
θJi(θ, D̂i

exp))∇θJi(θ + α∇̂Ji(θ, D̂i
exp)). We have

∥(I + α∇̂2
θJi(θ1, D̂i

exp))∇θJi(θ1 + α∇̂Ji(θ1, D̂i
exp))

− (I + α∇̂2
θJi(θ2, D̂i

exp))∇θJi(θ2 + α∇̂Ji(θ2, D̂i
exp))∥

≤ ∥(I + α∇̂2
θJi(θ, D̂i

exp))∥∥∇θJi(θ1 + α∇̂Ji(θ1, D̂i
exp))−∇θJi(θ2 + α∇̂Ji(θ2, D̂i

exp))∥

+ ∥∇θJi(θ + α∇̂Ji(θ, D̂i
exp))∥∥α∇̂2

θJi(θ1, D̂i
exp)− α∇̂2

θJi(θ2, D̂i
exp)∥.

According to the result in Lemma 1, we know that (I+α∇̂2
θJi(θ, D̂i

exp)) is bounded by (1+αηH) and
smooth with parameter αηρ. ∇θJi(θ) is bounded by ηG and smooth with parameter ηH . Along with
the fact that the Lipschitz parameter of the combination of functions is the product of their Lipschitz
parameters and θ + α∇̂Ji(θ, D̂i

exp) is smooth with parameter 1 + αηH ,∇θJi(θ + α∇̂Ji(θ, D̂i
exp)) is

smooth with parameter (1 + αηH)ηH . Therefore,

∥(I + α∇̂2
θJi(θ1, D̂i

exp))∇θJi(θ1 + α∇̂Ji(θ1, D̂i
exp))

− (I + α∇̂2
θJi(θ2, D̂i

exp))∇θJi(θ2 + α∇̂Ji(θ2, D̂i
exp))∥

≤ (1 + αηH)(1 + αηH)ηH∥θ1 − θ2∥+ ηG(αηρ)∥θ1 − θ2∥
= ((1 + αηH)2ηH + αηGηρ)∥θ1 − θ2∥.

Using the assumption α ≤ ηH , we know (1 + αηH) ≤ 2. Consequently, (I +

α∇̂2
θJi(θ, D̂i

exp))∇θJi(θ + α∇̂θJi(θ, D̂i
exp)) is smooth with parameter 4ηH + αηGηρ.

17



Now consider the Lipschitz parameter of Ji(θ+α∇̂Ji(θ, D̂i
exp))

∑
τ∈D̂i

exp

∑H
t=0∇θ log π(xt | st; θ):

∥Ji(θ1 + α∇̂Ji(θ1, D̂i
exp))

∑
τ∈D̂i

exp

H∑
t=0

∇θ log π(xt | st; θ1)

− Ji(θ2 + α∇̂Ji(θ2, D̂i
exp))

∑
τ∈D̂i

exp

H∑
t=0

∇θ log π(xt | st; θ2)∥

≤ ∥Ji(θ + α∇̂Ji(θ, D̂i
exp)∥

∑
τ∈D̂i

exp

H∑
t=0

∥∇θ log π(xt | st; θ1)−∇θ log π(xt | st; θ2)∥

+
∑

τ∈D̂i
exp

H∑
t=0

∥∇θ log π(xt | st; θ)∥∥Ji(θ1 + α∇̂Ji(θ1, D̂i
exp)− Ji(θ2 + α∇̂Ji(θ2, D̂i

exp)∥.

Relying on the Assumption 2, we know that∇θ log π(xt | st; θ) is bounded by G and smooth with
parameter L. Along with the fact that the Lipschitz parameter of the combination of functions is the
product of their Lipschitz parameters and θ + α∇̂Ji(θ, D̂i

exp) is smooth with parameter 1 + αηH ,
Ji(θ + α∇̂Ji(θ, D̂i

exp)) is smooth with parameter (1 + αηH)ηG ≤ 2ηG. Therefore,

∥Ji(θ1 + α∇̂Ji(θ1, D̂i
exp))

∑
τ∈D̂i

exp

H∑
t=0

∇θ log π(xt | st; θ1)

− Ji(θ2 + α∇̂Ji(θ2, D̂i
exp))

∑
τ∈D̂i

exp

H∑
t=0

∇θ log π(xt | st; θ2)∥

≤ R

1− γ
D(H + 1)L∥θ1 − θ2∥+D(H + 1)G2ηG∥θ1 − θ2∥

= D(H + 1)R

(
L

1− γ
+

2G2

(1− γ2)

)
.

According to the following derivation, we know that the Lipschitz parameter of Ji(θ +

α∇̂Ji(θ, D̂i
exp))

∑
τ∈D̂i

exp

∑H
t=0∇θ log π(xt | st; θ) is D(H + 1)R

(
L

1−γ + 2G2

(1−γ2)

)
.

Finally, the Lipschitz parameter of ∇θF (θ) is 4ηH + αηGηρ +D(H + 1)R( L
1−γ + 2G2

(1−γ2) ).

B.4 PROOF OF THEOREM 1

First, we establish an upper bound on the variance of the estimation of the meta-objective function
gradient ∇θF (θ).

Lemma 3. Suppose that the conditions in Assumptions.1, 2 are satisfied. For the case that α ∈
(0, 1

ηH
], and any choice of task subset B, we have

E∥∇̂θF (θ)−∇θF (θ)∥ ≤ L2
G

BD
.

The proof is based on an application of the law of large numbers and variance additivity. If
{X1, X2, . . . , Xn} are independent random variables with E[Xi] = µ, and variance bounded by
Var[Xi] ≤ σ2, then the variance of the sample mean is bounded by

E
[∥∥∥∥X1 + · · ·+Xn

n
− µ

∥∥∥∥ ≤ σ2

n

]
.
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Next, we proceed with the proof. Using the smoothness property of ∇θF (θ), we have

|F (θk+1)− F (θk)−∇θF (θk)× (θk+1 − θk)| ≤
L2
H

2
∥θk+1 − θk∥.

At iteration k + 1, we have θk+1 − θk = β∇̂θF (θk), and therefore,

−F (θk+1) ≤ −F (θk)− β∇θF (θk)× ∇̂θF (θk) +
L2
H

2
β2∥∇̂θF (θk)∥2.

Taking the expectations of both sides, we obtain

−E[F (θk+1)] ≤ −E[F (θk)]− βE[∥∇θF (θk)∥2]

+
L2
H

2
β2(E[∥∇θF (θk)∥2] + E[∥∇̂θF (θ)−∇θF (θ)∥2])

≤ −E[F (θk)]−
β

2
E[∥∇θF (θk)∥2] +

L2
GLHβ2

2BD
.

We prove the conclusion by contradiction. Assume our result does not hold for the first T iterations,
i.e.,

E[∥∇θF (θk)∥2] ≥
2L2

GLHβ

BD
+ ϵ2.

For any 0 ≤ k ≤ T − 1, we have

−E[F (θk+1)] ≤ −E[F (θk)]−
βϵ2

2
− L2

GLHβ2

BD
+

L2
GLHβ2

2BD
.

Summing up the above formulation for k = 0, . . . , T − 1, we obtain

−E[F (θT )] ≤ −E[F (θ0)]− T (
βϵ2

2
+

L2
GLHβ2

2BD
).

We know that E[F (θ)] ∈ [ a
1−γ ,

b
1−γ ], and hence E[F (θ0)]− E[F (θT )] ≤ b−a

1−γ . Then, we have

T

(
βϵ2

2
+

L2
GLHβ2

2BD

)
≤ b− a

1− γ
.

When we choose T ≥ b−a
1−γ (

2
βϵ2 + 2BD

L2
GLHβ2 ), contradiction occurs. Hence, the desired result follows.

C EXPERIMENTAL DETAILS

In this section, we provide the details of the baseline methods. We also introduce a new baseline for
comparison with our method in the same environments and show the corresponding results.

C.1 BASELINES

The baseline algorithms, Standard MAML and Pre-trained PPO, are presented in Algo-
rithms 2 and 3, respectively. The new baseline, Causal PPO, is introduced in Algorithm 4.

Algorithm 2: MAML
1 Require: Initial parameter θ
2 while not done do
3 Nature samples a batch of CMDP tasks B = {Mi}Bi=1 from distribution ρ(M)
4 for all taskMi ∈ B do
5 Sample observation trajectories Di

obs,in and Di
obs,o in environmentMi

6 Compute inner gradient ∇̂θJi(θ,Di
in) using dataset Di

in

7 Set adapted parameter θi = θ + α∇̂θJi(θ,Di
in)

8 end

9 Update θ ← θ + β∇̂θ

B∑
i=1

Ji(θi,Di
o)

10 end
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Algorithm 3: PRE-TRAINED PPO
1 Require: Initial parameter θ
2 while not done do
3 Nature samples a batch of CMDP tasks B = {Mi}Bi=1 from distribution ρ(M)
4 for all task Ci ∈ B do
5 Sample observation trajectories Di in environmentMi

6 Compute gradient ∇̂θJi(θ,Di) using dataset Di

7 Update parameter θ ← θ + α∇̂Ji(θ,Di)
8 end
9 end

Algorithm 4: Causal PPO
1 Require: Initial parameter θ, an approximate prior over CMDPs ρ̂(M)
2 while not done do
3 Nature samples a batch of CMDP tasks B = {Mi}Bi=1 from distribution ρ(M)
4 for all task Ci ∈ B do
5 Sample a new environment M̂i from the posterior ρ̂(M | Di

obs)

6 Sample experimental trajectories D̂i
exp using agent policy π(· | ·; θ) in environment M̂i

7 Compute gradient ∇̂θJi(θ, D̂i
exp) using dataset D̂i

exp

8 Update parameter θ ← θ + α∇̂Ji(θ, D̂i
exp)

9 end
10 end

C.2 COMPARISON OF CAUSAL-MAML AND CAUSAL PRE-TRAINED PPO

We also compare the causal PPO method with our causal MAML method. Causal PPO also constructs
virtual environments using demonstrator data in confounding MDPs. Then causal PPO collects
experimental data using policy πθ in such virtual environments and update parameters by gradients
calculated on these experimental trajectories. Fig.7a and Fig.7c show that causal PPO have almost the
same performance as our proposed causal MAML, including the similar adaption speed and variance.
Fig.7b indicates that causal PPO adapts more quickly than our proposed causal MAML, however,
with a larger variance in returns during adaption. (Zhao et al., 2022) and (Gao & Sener, 2020) reveal
the same results: multi-task pretraining performs equally, or even better than meta-pretraining for
adapting to new tasks.

(a) Pick up key environments (b) Go to door environments (c) Go to goal environments

Figure 7: Returns of MiniGrid environments comparing PPO from scratch, Pre-Trained PPO, standard
MAML, CAUSAL PRE-TRAINED PPO, and Proposed Causal-MAML with error bars

Table 1 further summarizes the average testing returns across three environments. The results show
that both Causal PPO and Causal MAML significantly outperform standard baselines such as PRE-
TRAINED PPO, Standard MAML, and PPO from scratch. Notably, Causal-PPO achieves the highest
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Table 1: Average testing returns of CAUSAL-MAML against baselines.

METHOD Pick-Up-Key Go-To-Door Go-To-Goal
PRE-TRAINED PPO 0.05±0.10 -0.06±0.03 -0.07±0.02
Stardard MAML 0.02±0.10 -0.07±0.03 0.19±0.32
PPO from scratch 0.65±0.41 0.26±0.13 0.69±0.32
CAUSAL PRE-TRAINED PPO 1.28±0.16 0.82±0.13 1.05±0.13
CAUSAL-MAML 1.21±0.17 0.65±0.08 1.00±0.11

returns overall, while Causal MAML attains competitive performance with slightly lower variance in
certain tasks.
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