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Abstract

A unifying theme in Artificial Intelligence is learn-
ing an effective policy to control an agent in an un-
known environment in order to optimize a certain
performance measure. Off-policy methods can sig-
nificantly improve sample efficiency during train-
ing, since they allow an agent to learn from ob-
served trajectories generated by different behavior
policies, without directly deploying target poli-
cies in the underlying environment. This paper
studies off-policy evaluation from biased offline
data where (1) unobserved confounding bias can-
not be ruled out a priori; or (2) the observed tra-
jectories do not overlap with intended behaviors
of the learner, i.e., the target and behavior poli-
cies do not share a common support. Specifically,
we extend Bellman’s equation to derive effective
closed-form bounds over value functions from the
observational distribution contaminated with un-
observed confounding and no overlap. Second, we
propose two novel algorithms that use eligibility
traces to estimate these bounds from finite observa-
tional data. Compared to other methods for robust
off-policy evaluation in sequential environments,
these methods are model-free and extend, for the
first time, the well-celebrated temporal difference
algorithms (Sutton, 1988) to biased offline data
with unobserved confounding and no overlap.

1 INTRODUCTION

A typical reinforcement learning agent learns from past data,
i.e., from observed trajectories of states, actions, and reward
signals generated by the agent intervening in the underlying
environment. This data reflects the influence of the decision-
making policy used to allocate actions based on the observed
state, which is called the behavior policy. This policy might

be selected by the agent in the past or by a different demon-
strator operating in the same environment. Policy evaluation
studies the problem of evaluating the effectiveness of a
candidate target policy from the combination of past data
and theoretical assumptions about the environment. When
the behavior and target policies coincide, the evaluation is
called on-policy learning, in which the expected return of
candidate policies given the agent’s starting state (i.e., the
value function) could be directly estimated with empirical
means [Sutton and Barto, 1998]. In practice, however, the
learner might have to learn about policies different from the
currently deployed one that generated the data, leading to
the off-policy learning problem.

Off-policy learning is a popular area of research, as it allows
for more efficient learning by using data from different poli-
cies. Several algorithms have been proposed for off-policy
evaluation from finite observations, including Q-learning
[Watkins, 1989, Watkins and Dayan, 1992], importance
sampling [Swaminathan and Joachims, 2015, Jiang and Li,
2016], and temporal difference [Precup et al., 2000, Munos
et al., 2016]. These algorithms rely on two critical assump-
tions about the behavior policy. First, no unobserved con-
founder affects the behavior policy’s selected action and the
subsequent state and reward. Second, the behavior policy
is stochastic, covering all intended actions the target policy
selects given all observed states. When either of these as-
sumptions does not hold, the effect of the target policy is
generally not identifiable, i.e., the model assumptions are
insufficient to uniquely determine the value function from
the offline data [Pearl, 2000, Zhang and Bareinboim, 2019].

In recent times, researchers have been using partial iden-
tification methods to obtain reliable off-policy evaluation
in situations where there are unobserved confounders, and
the behavior and target policies have no common support
[Kallus and Zhou, 2018, Zhang and Bareinboim, 2019,
Kallus and Zhou, 2020, Namkoong et al., 2020, Khan et al.,
2023, Bruns-Smith and Zhou, 2023, Kausik et al., 2024].
Partial identification is a well-studied problem in causal in-
ference [Balke and Pearl, 1997, Zhang et al., 2022], econo-



metrics [Imbens and Rubin, 1997, Poirier, 1998, Romano
and Shaikh, 2008, Stoye, 2009, Bugni, 2010, Todem et al.,
2010, Moon and Schorfheide, 2012], and dynamical sys-
tems [Bajari et al., 2007, Norets and Tang, 2014, Dickstein
and Morales, 2018, Morales et al., 2019, Berry and Com-
piani, 2023]. It enables the derivation of informative bounds
on target effects from confounded observational data. Sev-
eral model-based algorithms have been proposed, which
estimate the underlying system dynamics from offline data
based on a combination of conditions and constraints. These
include (1) the marginal sensitivity model that assumes ac-
cess to a bound over the odds ratio between the nominal and
actual behavioral policies [Kallus and Zhou, 2018, 2020,
Namkoong et al., 2020, Khan et al., 2023, Bruns-Smith and
Zhou, 2023]; (2) parametric knowledge about the system
dynamics (i.e., reward function and transition distribution)
are invoked under which informative bounds are derived
[Kausik et al., 2024]; (3) the decision horizon is finite, i.e.,
the agent only determines a finite number of actions [Kallus
and Zhou, 2018, Zhang and Bareinboim, 2019, Namkoong
et al., 2020, Khan et al., 2023, Kausik et al., 2024]. We refer
readers to Appendix A for a more detailed survey on partial
identification and robust reinforcement learning.

This paper contributes to this growing line of literature by
studying model-free algorithms for robust off-policy evalua-
tion over an infinite horizon from confounded offline data
generated by behavior policy with no overlap support. We
propose novel partial identification algorithms using eligi-
bility traces to obtain informative bounds over the expected
return of candidate policies from offline data generated from
an unknown Markov decision process where the unobserved
confounders exist, and overlap does not hold.

More specifically, our contributions are summarized as fol-
lows. (1) We extend the Bellman equation that permits one
to derive optimal bounds over target value functions from
the observational distribution generated by an unknown be-
havior policy. (2) We propose a novel off-policy temporal
difference algorithm (C-TD(λ)) using eligibility traces to
estimate bounds over the state value function from finite ob-
servations contaminated with unobserved confounding and
no overlap. (3) We introduce an alternative eligibility trace
algorithm following tree backup (C-TB(λ)) that obtains
bounds over the state-action value function from biased ob-
servations. Finally, we evaluate our proposed algorithms
using extensive simulations in synthetic environments. Due
to space constraints, all proofs are provided in Appendix B;
details of the experiment setup are provided in Appendix C.

Notations. We use capital letters to denote random vari-
ables (X), small letters for their values (x) and X for the
domain of X . For an arbitrary set X , let |X| be its cardi-
nality. Fix indices i, j ∈ N. Let X̄i:j stand for a sequence
{Xi, Xi+1, . . . , Xj}. We denote by P (X) a probability dis-
tribution over variables X . Similarly, P (Y |X) represents

a set of conditional distributions P (Y | X = x) for all
realizations x. We consistently use P (x) as abbreviations
of probabilities P (X = x); so does P (Y = y | X =
x) = P (y | x). Finally, 1Z=z is an indicator function that
returns 1 if event Z = z holds true; otherwise, it returns 0.

2 CHALLENGES OF CAUSAL
INCONSISTENCY

We will focus on a sequential decision-making problem
in the Markov Decision Process (MDP, Puterman [1994])
where the agent intervenes on a sequence of actions to opti-
mize certain rewards/primary outcomes.

The standard MDP formalism focuses on the perspective of
learners who could actively intervene in the environment.
Consequently, the data collected from randomized experi-
ments are not contaminated with unobserved confounding
bias, which is generally assumed away in the model. How-
ever, when considering offline data collected by passive
observation, the learner may not necessarily have deliber-
ate control over the behavioral policy generating the data.
Consequently, this could lead to confounding bias in various
decision-making tasks [Kallus and Zhou, 2018, Zhang et al.,
2020b, Kumor et al., 2021, Guo et al., 2022, Ruan et al.,
2024]. In this paper, we will consider an extended family
of MDPs that explicitly models the presence of unobserved
confounders when generating offline data.

Definition 1. A Confounded Markov Decision Process
(CMDP) M is a tuple of ⟨S,X ,Y,U ,F , P ⟩ where (1)
S,X ,Y are, respectively, the space of observed states, ac-
tions, and rewards; (2) U is the space of unobserved exoge-
nous noise; (3)F is a set consisting of the transition function
fS : S ×X ×U 7→ S , behavioral policy fX : S × U 7→ X ,
and reward function fY : S × X × U 7→ Y; (4) P is an
exogenous distribution over the domain U .

Throughout this paper, we will consistently assume the state-
action domain X × S to be finite; the reward domain Y is
bounded in a real interval [a, b] ⊂ R.

Consider a demonstrator agent interacting with a CMDP
M, generating the offline data. For every time step t =
1, . . . , T , the nature first draws an exogenous noise Ut from
the distribution P (U); the demonstrator then performs an
action Xt ← fX(St, Ut), receives a subsequent reward
Yt ← rt(St, Xt, Ut), and moves to the next state St+1 ←
fS(St, Xt, Ut). The observed trajectories of the demonstra-
tor (from the learner’s perspective) are thus summarized as
the observational distribution P (X̄1:T , S̄1:T , Ȳ1:T ), i.e.,

P (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)

T∏
t=1

(∫
U
1st+1=fS(st,xt,ut)

1xt=fX(st,ut)1yh=fY (st,xt,ut)P (ut)

)
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Figure 1: Causal diagram representing the data-generating
mechanisms in a Markov Decision Process (MDP)

Fig. 1 shows the causal diagram G [Bareinboim et al., 2022]
describing the generative process generating the offline data
in CMDPs. More specifically, solid nodes represent ob-
served variables Xt, St, Yt, and arrows represent the func-
tional relationships fX , fS , fY among them. By convention,
exogenous variables Ut are often not explicitly shown; bi-
directed arrows Xt ←→ Yt and Xt ←→ St+1 indicate the
presence of an unobserved confounder (UC) Ut affecting the
action, state, and reward simultaneously. These bi-directed
arrows (highlighted in blue) characterize the spurious cor-
relations among action Xt, reward Yt, and state St+1 in
the offline data, violating the condition of no unmeasured
confounding (NUC, Robbins [1985]). Such violations could
lead to challenges in off-policy evaluation, which we will
discuss for the remainder of this section.

Off-Policy Evaluation. A policy π in a CMDPM is a
decision rule π : S 7→ X mapping from state to action.
Similarly, π(xt | st) is a stochastic policy mapping from
state space S to a distribution over action space X . An
intervention do(π) is an operation that replaces the behav-
ioral policy fX in CMDPM with the policy π. LetMπ be
the submodel induced by intervention do(π). The interven-
tional distribution Pπ(X̄1:T , S̄1:T , Ȳ1:T ) is defined as the
joint distribution over observed variables inMπ , i.e.,

Pπ(x̄1:T , s̄1:T , ȳ1:T ) = P (s1)

H∏
h=1

(
πh(xh | sh)

Th(sh, xh, sh+1)Rh(sh, xh, yh)

) (1)

where the transition distribution Th and the reward distribu-
tionRh are given by, for h = 1, . . . ,H ,

T (st, xt, st+1) =

∫
U
1st+1=fS(st,xt,ut)P (ut) (2)

R(st, xt, yt) =

∫
U
1yt=fY (st,xt,ut)P (ut) (3)

For convenience, we write the reward function R(s, x) as
the expected value

∑
y yR(s, x, y).

Fix a discounted factor γ ∈ [0, 1]. A common objec-
tive for an agent is to optimize its cumulative return
Rt =

∑∞
i=0 γ

iYt+i. In analysis, we often evaluate the
state value function Vπ(s), which is the expected return

given the agent’s starting state St = s. That is, Vπ(s) =
Eπ [Rt | St = s]. A similar state-action value function
Qπ(s, x) is defined as the expected return starting from
state s, taking action x and thereafter following policy π,
i.e., Qπ(s, x) = EXt←x,π [Rt | St = s]. One could recur-
sively evaluate the value function of any state s using the
Bellman Equation [Bellman, 1966] given by,

Vπ(s) =
∑
x

π(x | s)
(
R(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)
)

(4)
Similarly, an analogous equation for the state-action value
function is given by

Qπ(s, x) = R(s, x) + γ
∑
s′

T (s, x, s′)Vπ(s
′) (5)

In off-policy evaluation, the agent (i.e., learner) attempts
to estimate the effects of a candidate policy π(x|s) from
the observational data generated by the behavior policy fX
(demonstrator). Standard off-policy methods focus on the
identifiable setting where the transition distribution T and
reward function R remain consistent in both the interven-
tional Pπ and observational distribution P . Formally,

Definition 2 (Causal Consistency). For a CMDPM, the
Causal Consistency holds if the following statement holds,
for every time step t = 1, 2, . . . ,

T (st, xt, st+1) = P (st+1 | st, xt) ,

R(st, xt, yt) = P (yt | st, xt)
(6)

When Causal Consistency holds, the learner could recover
the parametrization of the transition distribution T and re-
ward functionR from the observational data, following the
identification formula in Eq. (6). Several off-policy algo-
rithms have been proposed to estimate the effect of candidate
policies from finite observations under causal consistency
[Watkins, 1989, Watkins and Dayan, 1992, Swaminathan
and Joachims, 2015, Jiang and Li, 2016, Precup et al., 2000,
Munos et al., 2016]. There exist graphical criteria in the liter-
ature [Pearl and Robins, 1995, Shpitser et al., 2010, Perković
et al., 2015] to evaluate whether causal consistency (Def. 2)
holds from causal knowledge of the environment, including
the celebrated backdoor criterion [Pearl, 2000, Def. 3.3.1].

However, in many practical applications, causal consistency
could be fragile and does not necessarily hold due to some
violations in the generative process. These include: (1) there
exists an unobserved confounder affecting the action Xt

and subsequent outcomes Yt, St+1 simultaneously (blue,
dashed arrows in Fig. 1); (2) there is no overlap in the
support between the target and behavior policies, i.e., the
propensity score P (xt | st) = 0 for some state-action
pair st, xt. When either of these violations occurs, applying
standard off-policy methods may fail to recover the expected
return of the target policy, leading to estimation bias. The
following example illustrates such challenges.
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Figure 2: A windy gridworld environment where the red
arrow represents the agent and green square is the goal
state; the agent can take five actions - up, down, right,
left, and stay-put; the wind can blow in five direction
- north, south, west, east, and no-wind. The agent
attempts to reach the goal without avoid stepping into lava.

Example 1. Consider a Windy Gridworld described in
Fig. 2, which we adapted from one of Deepmind’s AI safety
Gridworlds [Leike et al., 2017]. The red triangle represents
the agent, and the green square represents the goal state.
The agent can take five actions Xt - up, down, right,
left, and stay-put. The agent receives a constant re-
ward Yt ← 1 if it reaches the goal state. On the other hand,
the task fails, and the agent receives no reward (Yt ← 0) if
it steps into the lava (orange tiles) on its way.

Additionally, the agent’s movement is affected by the
wind direction Ut, which could take five values at each
time-step, including - east, south, west, north, and
no-wind. The distribution of the wind direction depends
on the agent’s location. As an example, Fig. 2a shows
samples of wind directions for every position at a single
time step. In general, the wind tempts to push the agent
toward the lava; the closer the agent gets to the lava, the
stronger the wind becomes. If the agent decides to move
(i.e., Xt ← up,down,right,left), its next state of the
agent is shifted by both its action and the wind direction
through the mechanism St+1 ← St +Xt + Ut. Otherwise,
the agent will stay put (Xt ← stay-put) at its current
position regardless of the wind direction, i.e., St+1 ← St.

Figs. 3a to 3b shows the value function estimation obtained
by standard off-policy methods, including temporal differ-
ence with importance sampling [Precup et al., 2000], and
tree backup [Sutton and Barto, 1998]. For comparison, we
also include in Fig. 3c the actual value function computed
from the ground-truth model using value iteration. The sim-
ulation reveals that standard off-policy evaluation deviates
from the ground truth return. In this case, the demonstra-
tor will only move if there is no wind, which makes the
shorter path appear less risky than it actually is. The wind
direction Ut is thus an unobserved confounder affecting
both the action Xt and next state St+1 in the offline data,
violating causal consistency. See Appendix C for additional
discussions on the windy Gridworld environment.

2.1 PARTIAL CAUSAL IDENTIFICATION IN
CONFOUNDED MDPS

This section will introduce partial identification methods for
off-policy evaluation that is robust to the unobserved con-
founding and no overlap. For every time step t = 1, 2, . . . ,
let the reward Yt be bounded in a real interval [a, b]. By ap-
plying a similar bounding strategy in [Manski, 1990, Zhang
and Bareinboim, 2019, Joshi et al., 2024], we derive the
following bounds over the transition probability distribution
T for every realization (s, x, s′) ∈ S × X × S,

T (s, x, s′) ≥ T̃ (s, x, s′)P (x | s)

T (s, x, s′) ≤ T̃ (s, x, s′)P (x | s) + P (¬x | s)
(7)

where P (x | s) = P (Xt = x | St = s) and P (¬x |
s) = 1 − P (x | s); and T̃ is the nominal transition dis-
tribution computed from the observational distribution as
T̃ (s, x, s′) = P (St+1 = s′ | St = s,Xt = x). Similarly,
one could also derive the following bound over the reward
functionR for every state-action pair (s, x) ∈ S × X ,

R (s, x) ≥ R̃ (s, x)P (x | s) + aP (¬x | s),

R (s, x) ≤ R̃ (s, x)P (x | s) + bP (¬x | s)
(8)

where R̃ is the nominal reward function given by R̃ (s, x) =
E [Yt | St = s,Xt = x].

To bound the value function Vπ(s) at state s induced by a
candidate policy π, one could minimize/maximize the opti-
mization program using the Bellman’s equation in Eq. (4)
as the objective function, subject to constraints in Eqs. (7)
and (8). Interestingly, this optimization problem is equiva-
lent to a linear program; solving it leads to the following
extended Bellman equation.

Theorem 1 (Causal Bellman Equation). For a CMDPM
with reward domain Y = [a, b], for any policy π(x | s), its
state value function Vπ(s) ∈

[
Vπ(s), Vπ(s)

]
for every state

s ∈ S , where the lower bound Vπ is a solution given by the
following dynamic program,

Vπ(s) =
∑
x

P (x | s)
(
π(¬x | s)

(
a+ γmin

s′
Vπ(s

′)
)

(9)

+π(x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
))

(10)

Similarly, the upper bound Vπ is a solution given by

Vπ(s) =
∑
x

P (x | s)
(
π(¬x | s)

(
b+ γmax

s′
Vπ(s

′)
)

(11)

+π(x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
))

(12)

Thm. 1 can be seen as an extension of the Bellman equa-
tion using the confounded observational distribution with
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Figure 3: (a - b) Value function estimation obtained by standard off-policy methods; (c - d) The ground-truth value function
computed from the underlying model; (e - h) Lower and upper bounds on the value functions obtained by causally enhanced
off-policy algorithms using eligibility traces (C-TD(λ) and C-TB(λ))

no overlap. For instance, in the lower bound Vπ(s), Eq. (9)
could be thought as a regularizing term measuring the uncer-
tainty due to unobserved confounding; Eq. (10) follows the
standard iterative step in Bellman equation in Eq. (4), mea-
suring the expected return when the target policy’s action
coincides with the observed action selected by the behav-
ior policy. Finally, both terms are weighted by the nominal
propensity score P (x | s). The same derivation also applies
to the upper bound Vπ(s). An analogous extended Bellman
equation bounding the state-action value function from the
observational distribution can also be derived as follows.

Theorem 2 (Causal Bellman Equation). For a CMDPM
with reward domain Y = [a, b], for any policy π(x | s), its
state-action value function Qπ ∈

[
Qπ(s, x), Qπ(s, x)

]
for

any state-action pair (s, x) ∈ S × X , where bounds Qπ is
a solution given by the following dynamic program,

Qπ(s, x) = P (¬x | s)
(
a+ γmin

s′
Vπ(s

′)
)

(13)

+ P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
)

(14)

Similarly, the upper bound Qπ is a solution given by

Qπ(s, x) = P (¬x | s)
(
b+ γmax

s′
Vπ(s

′)
)

(15)

+ P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
)

(16)

Among the bounds in Thm. 2, Eq. (13) is a regularized term
accounting for uncertainties when the intervention do(x)
is not observed in the offline data; Eq. (14) is the standard

iterative step of the Bellman equation in Eq. (5), weighted
by the score P (x | s). Since Thms. 1 and 2 are closed-form
solutions of optimization programs and the observational
constraints in Eqs. (7) and (8) are tight, the extended Bell-
man’s equation bounds are optimal from offline data and
Markov property. This means that these bounds cannot be
further improved without additional assumptions.

3 CONFOUNDING ROBUST
ELIGIBILITY TRACES

The extended causal Bellman equations described so far
require one to have precise estimations for the full models
of the nominal transition distribution T̃ , reward function
R̃, and the propensity score P (x | s). However, in practice,
the detailed parameterizations of these probability models
are generally assumed to be unknown. The learner must re-
cover them from finite samples drawn from the confounded
observational distribution.

This section will introduce novel model-free algorithms,
using eligibility traces [Sutton, 1988], to bound value func-
tions from finite observational samples. We consider the
episodic framework, where the agent interacts with the envi-
ronment for repeated episodes n = 1, 2, 3, . . . ; each episode
contains a finite number of time steps t = 1, 2, . . . , Tn.
At each episode, the environment starts at state s1 follow-
ing the initial distribution P (S1). At each time step t, tak-
ing the observed state st of the environment as input, the
behavior policy selects an action xt. In response to inter-
vention do(xt), the environment produces a subsequent re-



Algorithm 1 Causal Temporal Difference (C-TD(λ))

Require: Observational data D and a policy π(x | s).
1: Update the eligibility traces for all state s ∈ S,

et(s) = γλπ(xt−1 | st−1)et−1(s) + 1s=st

where λ ∈ [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error

δt = π(xt | st) (yt + γVt(st+1))

+ π(¬xt | st) (w + γVt(s
∗))− Vt(st)

3: Update the value function Vt+1(s)← Vt(s)+αet(s)δt
for all state s ∈ S.

ward yt and moves to the next observed state st+1. If the
next state st+1 is terminal, the episode terminates at time
step Tn = t + 1; the learner receives observational data
{x̄1:Tn−1, s̄1:Tn

, ȳ1:Tn−1}.

3.1 CAUSAL TEMPORAL DIFFERENCE
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Figure 4: Backup dia-
gram for C-TD(λ).

We first introduce a novel aug-
mentation procedure on the
celebrated temporal difference
(TD, [Sutton, 1988, Precup
et al., 2000]) that allows one to
estimate the bounds over state
value functions, which we call
the causal temporal differ-
ence (C-TD). Fig. 4 shows
the backup diagram illustrat-
ing the idea of our proposed
algorithm. Similar to the stan-
dard off-policy TD, our algo-
rithm will update the estima-
tion of state value functions
Vπ, Vπ using the sampled tra-
jectories of transitions in the observational data. It could use
a finite number of n-step trajectories or the entire trajectory.
Different from the standard off-policy TD, our proposed
algorithm does not weight each step of the transition using
importance sampling (or equivalently, inverse propensity
weighting) since the true behavior policy fX (propensity
score) is not recoverable from the observational data. In-
stead, C-TD weights each transition using the target policy
π and adjusts for the misalignment between the target and
behavior policies using an overestimation/underestimation
of value function at state s∗. Such s∗ is set as the best-case
state associated with the highest value in our current estima-
tion when computing upper bounds and the worst-case state
estimate for lower bounds.

To formally introduce the estimation algorithm, we first
introduce some necessary notations. Let N(s) denote the

set of indices of episodes containing a state s ∈ S, and let
tn(s) be the collection of time steps in the n-th episode such
that for every t ∈ tn(s), st = s. For any time step t, let
πt = π(xt | st) and ¬πt = 1 − π(xt | st). We iteratively
define the estimator for bounds over the state value function
Vπ(s) as follows, for any state s ∈ S,

V̂π(s) =
1

N

∑
n∈N(s)

∑
t∈t(s)

Tn−t∑
k=0

γk
(
πt+kyt+k

+¬πt+k

(
w + γV (s∗)

)) t+k−1∏
i=t

πi

(17)

Among the above equation, N represents the total number
of occurrences for the even st = s in the observational data.
we set parameters w = a and V (s∗) = mins V (s) when
estimating the lower bound Vπ(s); parameters w = b and
V (s∗) = maxs V (s) for the upper bound Vπ(s).

An eligibility-trace version of our proposed estimation strat-
egy is described Alg. 1. The algorithm keeps track of eligi-
bility traces for every state in a similar manner to standard
off-policy temporal difference algorithms. The main differ-
ence is that here the eligibility trace is multiplied by the
target policy π(xt−1 | st−1) and a decay-rate λ, not includ-
ing the nominal propensity score P (xt−1 | st−1). When
computing the temporal difference error, the algorithm ad-
justs for the misalignment between the target and behavior
policies by adding a regularized term w+γVt(s

∗), weighted
by the probability 1 − π(xt | st). We describe in Alg. 1 a
version of C-TD(λ) using online update. This means that
the bound estimates are updated at every time step. The
offline version of the algorithm will use the same temporal
difference error and eligibility traces. However, the update
only occurs at the end of each episode; the increments and
decrements are accumulated on the side, and the value func-
tion estimates do not change during the episode.

Theorem 3. For any behavior policy, for any choice of
λ ∈ [0, 1] that does not depend on the actions chosen at
each state, let parameters w and s∗ be defined as follows:
(1) Lower Bound Vπ: w = a and s∗ = argmins Vt(s); (2)
Upper Bound Vπ: w = b and s∗ = argmaxs Vt(s). Then,
Alg. 1 with offline updating converges with probability 1 to
lower bound Vπ and upper bound Vπ, respectively, under
the usual step-size conditions on α.

The proof of Thm. 3 first shows a contraction property for
estimates V̂π, and then follows the general convergence
theorem in [Jaakkola et al., 1994].

3.2 CAUSAL TREE BACKUP

The algorithm described so far focuses on the estimation
of the state value functions. We next introduce a novel al-
gorithm to bound the state-action value function Qπ from
finite samples of the observational distribution.



Algorithm 2 Causal Tree-Backup (C-TB(λ))

Require: Observational data D and a policy π(x|s).
1: Update the eligibility traces for all state-action pairs

s, x ∈ S × X :

et(s, x) = γλπ(xt | st)1xt−1=xet−1(s, x) + 1s̸=st

where λ ∈ [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error for every action

x ∈ X . More specifically, if x = xt,

δt(x) = yt + γ
∑
x′

π(x | st+1)Qt(st+1, x
′)−Qt(st, x)

Otherwise,

δt(x) = w + γ
∑
x′

π(x′ | s∗)Qt(s
∗, x′)−Qt(st, x)

3: Update the action-value function Qt+1(s, x) ←
Qt(s, x) + αet(s, x)δt(x) for all s, x ∈ S × X .

(s, x)

S1

X1

s*
S2

X2

s*
S3

=
x

̸=
x

=
x

̸=
x

...

Figure 5: Backup dia-
gram for C-TB(λ).

Our algorithm is based on
an augmentation on the stan-
dard tree backup (TB [Pre-
cup et al., 2000]), which we
call the causal tree backup
(C-TB(λ)). The main idea
of this new algorithm is illus-
trated in the backup diagram
of Fig. 5. Similar to the stan-
dard tree backup, our algo-
rithm updates the value esti-
mates for the action selected
by the behavior policy at each
time step based on the subse-
quent reward and the current
estimation for the value of the
next state. The algorithm then
forms a new estimate for the
target value function, using the
old value estimates for the actions not observed in the ob-
servational data and the new estimated value for t-he action
taken by the behavior policy. On the other hand, the main
differences include the following. (1) Eligibility traces will
not only be weighted by the target policy π(xt | st) us-
ing the observed trajectories, but also an indicator function
1xt−1=x returning 1 if the previous action xt−1 coincides
with the target action x. (2) When the behavior policy takes
the same action xt = x as the target action, the update fol-
lows standard TB and uses the next sampled state st; when
the sampled action xt ̸= x differs from the target, our algo-
rithm updates, instead, using the value function associated
with the next worst-case or best-case state s∗, corresponding
to the estimation of the lower and upper bounds respectively.

(a) (b)

Figure 6: An alternative windy gridworld environment
where the lava is placed at both the top and bottom. The
wind is the weakest at the center row of the map.

The n-step causal tree-backup estimator is defined as

Q̂π(s, x) =
1

N

∑
n∈N(s)

∑
t∈t(s)

γnQ(st+n, xt+n)

·
t+n−1∏
i=t

πi+11xi=x +

t+n∑
k=t

γk−t+1
t+k−1∏
i=t

πi+11xi=x

·

(
1xk ̸=x

(
w +

∑
x′

π(x′ | s∗)Q(s∗, x′)

)
+ 1xk=x

·
(
yk +

∑
x′ ̸=x

π(x′ | sk+1)Q(sk+1, x
′)

))
(18)

The above tree backup estimator also has a simple incre-
mental implementation using eligibility traces. An online
version of this implementation is shown in Fig. 5.

Theorem 4. For any behavior policy, for any choice of
λ ∈ [0, 1] that does not depend on the actions chosen at
each state, let parameters w and s∗ be defined as follows: (1)
Lower Bound Qπ: w = a and s∗ = argmins

∑
x′ π(x′ |

s)Qt(s, x
′); (2) Upper Bound Qπ: w = b and s∗ =

argmaxs
∑

x′ π(x′ | s)Qt(s, x
′). Then, Alg. 2 with offline

updating converges with probability 1 to lower bound Qπ

and upper bound Qπ , respectively, under the usual step-size
conditions on α.

The proof of the above theorem relies on a contraction prop-
erty on the estimates Q̂π and follows from the general con-
vergence theorem in [Jaakkola et al., 1994].

4 EXPERIMENTS

We demonstrate our algorithms in different variations of the
Windy Gridworlds adapted from adapted from Deepmind’s
AI safety Gridworlds [Leike et al., 2017]. We found that
simulation results support our findings, and the proposed
causal eligibility trace algorithms consistently obtain infor-
mative bounds over target value functions. All experiments
use 5 × 104 offline observational samples, meaning that



(a) Off-Policy TD (b) Tree Backup (c) V ∗(s) (d) Q∗(s,right)

(e) V ∗(s) (f) V ∗(s) (g) Q∗(s,right) (h) Q∗(s,right)

Figure 7: Estimations of value functions obtained by (a, b) standard off-policy methods, (c, d) value interaction in the
ground-truth model, and (e, h) causally enhanced off-policy algorithms using eligibility traces (C-TD(λ) and C-TB(λ)).
The offline data are generated by a confounded behavior policy determining the agent’s actions based on the wind direction.

error bars are not significant, hence, not explicitly shown;
the decay factor λ = 0.5 and discount factor γ = 0.9. See
Appendix B for additional details on the experimental setup.

Experiment 1. Consider again the learning setting in Ex-
ample 1 where the demonstrator, following the behavior pol-
icy, decides whether to stay put and where to move based on
the agent’s state and the wind direction. Consequently, the
offline data is contaminated with the unobserved confound-
ing bias. We apply C-TD(λ) to derive bounds over the
optimal value function V ∗(s) and provide them in Figs. 3e
and 3f. The analysis reveals the derived bounds are consis-
tent, containing the target value function in Fig. 3c.

Additionally, we compute the optimal state-action value
function Q∗(s, x) for action x = right and provide it
in Fig. 7d. We then estimate its bounds using C-TB(λ)
from offline data; the bounding results are shown in Figs. 7d
and 7e. By inspection, one can see our proposed algorithms
are robust against the causal inconsistency in the offline data
and consistently recover the informative bounds containing
the actual value functions in the ground-truth model.

Experiment 2. We now consider an alternative Windy
Gridworld described in Fig. 6a where the lava is placed at
both top and bottom. Without sensing the wind, a prefer-
able policy for the agent is to move along the center of the
map where the wind strength is weak (highlighted in red
in Fig. 6b). At the same time, the demonstrator takes the
shortest path (orange in Fig. 6b) along the lava since it can
sense the wind and take safe actions. Similar to the previous
setting, the presence of wind direction becomes an unob-

served confounder in the offline data, making the shorter
route appear safer than it actually is.

We apply standard off-policy algorithms to evaluate the
effect of the target policy π∗ and provide their evaluations
in Figs. 7a to 7b. We also compute bounds over the target
value functions using our proposed algorithms, C-TD(λ)
and C-TB(λ), and provide their evaluations in Figs. 7e
to 7f and Figs. 7g to 7h respectively. Comparing the bounds
with the ground-truth value functions in Figs. 7c and 7d,
we found that C-TD(λ) and C-TB(λ) can consistently
obtain informative bounds. As expected, standard off-policy
methods are not robust against causal inconsistency and
deviate significantly from the target value functions.

5 CONCLUSION

This paper investigates off-policy evaluation in Markov De-
cision Processes from offline data collected by a different
behavior policy, where unobserved confounding bias and no-
overlap cannot be ruled out a priori. This leads to violations
of causal consistency (Def. 2), which could pose signifi-
cant challenges to standard off-policy algorithms. We first
extend the celebrated Bellman’s equation to derive informa-
tive bounds over values functions from the observational
data, which are robust against bias due to the presence of
unobserved confounding and no-overlap. Based on these
extended equations, we propose two novel model-free off-
policy algorithms using eligibility traces – one based on
the standard temporal difference (C-TD(λ)), and the other
based on the tree-backup (C-TB(λ)). These algorithms
permit us to bound value functions from finite observations.
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A RELATED WORK

Our work builds upon the literature on the partial identification of causal effects, sensitivity analysis, and robust reinforcement
learning from offline data.

Partial Identification and Sensitivity Analysis Seminal work of Manski [1990] developed the first bounds on causal
effects in non-identifiable settings using observational data in the single-stage treatment model with contextual information
(i.e., a contextual bandit model). These bounds were then expanded to the instrumental variable setting [Balke and Pearl,
1997, Imbens and Angrist, 1994] partially identify counterfactual probabilities of causation [Tian and Pearl, 2000]. More
recently, [Zhang and Bareinboim, 2021] improved the bounds for applicability to continuous outcomes. [Zhang et al., 2022]
established a general framework for estimating bounds on interventional and counterfactual effects. While Zhang et al.
[2022] develop informative bounds using both observational and experimental data, they focus on general counterfactual
queries by discretizing the exogenous latent space, formulating bounds as polynomial programs over this discretization and
a Bayesian framework to approximately estimate bounds using MCMC.

Sensitivity analysis attempts to provide intervals on causal effects by assuming the level of confounding, for example, via
models such as Marginal Sensitivity analysis, which considers deviations in the propensity score in relation to the estimated
propensity [Rosenbaum, 2005, Richardson et al., 2014, Todem et al., 2010, Vansteelandt et al., 2006, Kallus and Zhou,
2018, Kallus et al., 2019, Namkoong et al., 2020, Jesson et al., 2022, Bruns-Smith and Zhou, 2023, Kausik et al., 2024].
Other approaches explore additional parametric assumptions about the structural functions, including linearity [Cinelli
et al., 2019] and Lipschitz continuity [Khan et al., 2023]. Our work explores alternative model assumptions in discrete
Markov Decision Processes (MDPs) with bounded rewards over an infinite horizon. The condition of discrete state space,
bounded rewards, and Markov property are standard in the reinforcement learning literature [Puterman, 1994, Sutton and
Barto, 1998] and are generally verifiable from observed data in many practical applications. We develop robust off-policy
evaluation algorithms to estimate closed-form bounds over the discounted cumulative rewards of candidate policies from
offline observational data contaminated with unobserved confounding bias.

Robust Reinforcement Learning Unlike planning in a standard MDP, robust reinforcement learning does not assume
the parametrization of the transition probability function in the underlying model to be precisely determined. Instead, it is
contained in a set of model parameters which is called the uncertainty set [Iyengar, 2005, Nilim and El Ghaoui, 2005, Xu
and Mannor, 2010, Wiesemann et al., 2013, Yu and Xu, 2015, Mannor et al., 2016, Petrik and Russel, 2019]. The goal of the
agent is to learn a robust policy that performs the best under the worst possible case in the uncertainty set. Similar problems
have been studied under the rubrics of safe policy learning [Thomas et al., 2015, Ghavamzadeh et al., 2016] or pessimistic
reinforcement learning [Shi et al., 2022].1

Robust RL algorithms with provable guarantees have been proposed in tabular settings or under the assumptions of linear
functions [Lim et al., 2013, Tamar et al., 2014, Roy et al., 2017, Badrinath and Kalathil, 2021, Wang and Zou, 2021].
Combined with the computational framework of deep learning, robust RL algorithms have been extended to complex,
high-dimensional domains [Pinto et al., 2017, Zhang et al., 2020a]. More recently, [Panaganti et al., 2022] proposed Robust
Fitted Q-Iteration (RFQI) to learn the best possible robust policy from offline data with theoretical guarantees on the
performance of the learned policy. Our work differs from robust RL methods since it does not require a pre-specified
uncertainty set of model parameters. Instead, we construct the ignorance region over the underlying system dynamics
from the confounded observational data using partial causal identification. Based on the learned uncertainty set, we then
derived closed-form bounds over the value functions of the target policy. To the best of our knowledge, this is the first work
that develops off-policy algorithms using eligibility traces to obtain evaluations of candidate policies from biased offline
data, possibly contaminated with unmeasured confounding or no-overlap. We also provide provable guarantees on the
convergence of the policy evaluations obtained from finite observational samples.

B PROOFS

This section provides proof of the main theoretical results provided in the paper.

Theorem 1 (Causal Bellman Equation). For a CMDPM with reward domain Y = [a, b], for any policy π(x | s), its state

1Indeed, the idea of planning over a convex set of model parameters have been explored in online reinforcement learning. [Strehl and
Littman, 2008] utilized an extended dynamic programming to learn an optimistic policy over a confidence set of models to balance the
trade-off between exploration and exploitation.



value function Vπ(s) ∈
[
Vπ(s), Vπ(s)

]
for every state s ∈ S , where the lower bound Vπ is a solution given by the following

dynamic program,

Vπ(s) =
∑
x

P (x | s)
(
π(¬x | s)

(
a+ γmin

s′
Vπ(s

′)
)

(9)

+π(x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
))

(10)

Similarly, the upper bound Vπ is a solution given by

Vπ(s) =
∑
x

P (x | s)
(
π(¬x | s)

(
b+ γmax

s′
Vπ(s

′)
)

(11)

+π(x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
))

(12)

Proof. Following the Bellman equation [Bellman, 1966], the state value function at state s ∈ S is given by

Vπ(s) =
∑
x

π(x | s)

(
R(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
(19)

Among the above quantities, the reward function R is bounded from the observational distribution [Manski, 1990] as
follows,

R̃ (s, x)P (x | s) + aP (¬x | s) ≤ R (s, x) ≤ R̃ (s, x)P (x | s) + bP (¬x | s) (20)

where R̃ is the nominal reward function computed from the observational distribution. Replacing the reward functionR in
Eq. (19) with the above lower bound gives

Vπ(s) ≥
∑
x

π(x | s)

(
R̃ (s, x)P (x | s) + aP (¬x | s) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
+
∑
x

aπ(x | s)P (¬x | s) (21)

Similarly, the transition distribution T can be bounded from the observational distribution [Manski, 1990],

T̃ (s, x, s′)P (x | s) ≤ T (s, x, s′) ≤ T̃ (s, x, s′)P (x | s) + P (¬x | s) (22)

and T̃ is the nominal transition distribution computed from the observational distribution. Minimizing the lower bound in
Eq. (21) subject to the above observational constraints in Eq. (22) and

∑
s′ T (s, x, s′) = 1 gives the following lower bound:

Vπ(s) ≥
∑
x

π(x | s)P (x | s)

(
R̃ (s, x) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+
∑
x

π(x | s)P (¬x | s)
(
a+min

s′
Vπ(s

′)
) (23)

The above lower bound is achieved by setting the worst-case transition probability T (s, x, s∗) = P (¬x | s) for state
s∗ = argmins′ Vπ(s

′) and T (s, x, s′) = T̃ (s, x, s′)P (x | s) for all the other state s′ ̸= s∗. Note that the second term of
the above inequality could be further written as:∑

x

π(x | s)P (¬x | s)
(
a+min

s′
Vπ(s

′)
)

(24)

=
∑
x

π(x | s) (1− P (x | s))
(
a+min

s′
Vπ(s

′)
)

(25)

=
∑
x

π(x | s)
(
a+min

s′
Vπ(s

′)
)
−
∑
x

π(x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(26)

=
∑
x

P (x | s)
(
a+min

s′
Vπ(s

′)
)
−
∑
x

π(x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(27)



The last step holds since for any constant real value C,
∑

x π(x | s)C =
∑

x P (x | s)C. The above equation can be further
written as ∑

x

π(x | s)P (¬x | s)
(
a+min

s′
Vπ(s

′)
)
=
∑
x

π(¬x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(28)

Replacing the second term in Eq. (23) gives

Vπ(s) ≥
∑
x

π(x | s)P (x | s)

(
R̃ (s, x) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+
∑
x

π(¬x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
) (29)

After a few simplifications, we obtain

Vπ(s) ≥ P (x | s)

(
π(x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)

)
+ π(¬x | s)

(
a+ γmin

s′
Vπ(s

′)

))
(30)

Finally, minimizing the value function Vπ subject to the above inequality gives the lower bound Vπ. The upper bound Vπ

over the state value function could be similarly derived.

Theorem 2 (Causal Bellman Equation). For a CMDPM with reward domain Y = [a, b], for any policy π(x | s), its
state-action value function Qπ ∈

[
Qπ(s, x), Qπ(s, x)

]
for any state-action pair (s, x) ∈ S × X , where bounds Qπ is a

solution given by the following dynamic program,

Qπ(s, x) = P (¬x | s)
(
a+ γmin

s′
Vπ(s

′)
)

(13)

+ P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
)

(14)

Similarly, the upper bound Qπ is a solution given by

Qπ(s, x) = P (¬x | s)
(
b+ γmax

s′
Vπ(s

′)
)

(15)

+ P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)
)

(16)

Proof. Applying Bellman equation [Bellman, 1966] allows us to iteratively write the state-action value function for any
state-action pair (s, x) ∈ S × X as

Qπ(s, x) = R(s, x) + γ
∑
s′

T (s, x, s′)Vπ(s
′) (31)

where the reward functionR is bounded from the observational distribution [Manski, 1990] following Eq. (20). Replacing
the reward functionR in the above equation with the corresponding lower bound gives

Qπ(s, x) ≥ P (x | s)
(
R̃(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
+ aP (¬x | s) (32)

Similarly, the transition distribution T can be bounded from the observational distribution [Manski, 1990] following Eq. (22).
Minimizing the lower bound in Eq. (32) subject to the above observational constraints in Eq. (22) and

∑
s′ T (s, x, s′) = 1

gives the following solution:

Qπ(s, x) ≥ P (x | s)
(
R̃(s, x) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+ P (¬x | s)

(
a+min

s′
Vπ(s

′)
)

(33)

This lower bound is achieved by setting the worst-case transition probability T (s, x, s∗) = P (¬x | s) for state s∗ =

argmins′ Vπ(s
′) and T (s, x, s′) = T̃ (s, x, s′)P (x | s) for all the other state s′ ̸= s∗. Finally, notice that Vπ(s) is a

function of Qπ(s, x) and is given by Vπ(s) =
∑

x π(x | s)Qπ(s, x). Minimizing the state-action value function Qπ subject
to the above inequality leads to the lower bound Qπ . The upper bound Qπ could be similarly derived.



Theorem 3. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the actions chosen at each state,
let parameters w and s∗ be defined as follows: (1) Lower Bound Vπ: w = a and s∗ = argmins Vt(s); (2) Upper Bound Vπ:
w = b and s∗ = argmaxs Vt(s). Then, Alg. 1 with offline updating converges with probability 1 to lower bound Vπ and
upper bound Vπ , respectively, under the usual step-size conditions on α.

Proof. We will focus on the convergence of lower bound Vπ(s); the proof for the upper bound Vπ(s) follows analogously.
The proof is structured in two stages. First, we consider the truncated lower bound estimates corresponding to Eq. (17),
which sums the adjusted rewards obtained from the environment for only n steps, then uses the current estimate of the value
function lower bound to approximate the remaining value:

Rt
(n) =

n−1∑
k=0

γk
(
πt+kyt+k + ¬πt+k

(
b+ γmin

s′
V (s′)

)) t+k−1∏
i=t

πi + γnV (st+n)

t+k−1∏
i=t

πi (34)

We need to show that Rt
(n) − Vπ is a contraction mapping in the max norm. If this is true for any n, then by applying the

general convergence theorem, the n-step return converges to Vπ . Then any convex combination will also converge to Vπ . For
example, any combination using a λ parameter in the style of eligibility traces will converge to Vπ .

The expected value of the adjusted return with regard to the observational distribution for state s can be written as 2:

E
[
Rt

(n) | St = s
]

(35)

=

n∑
k=1

∑
s̄1:k,x̄1:k,ȳ1:k

P (s̄1:k, x̄1:k, ȳ1:k) γ
k−1

(
πkyk + ¬πk

(
b+min

s′
V (s′)

)) k−1∏
i=1

πi (36)

+
∑

s̄1:n,x̄1:n

P (s̄1:n, x̄1:n) γ
nV (sn)

n−1∏
i=1

πi (37)

=

n∑
k=1

γk−1
∑

s̄1:k,x̄1:k

k−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si) (38)

·
(
π(xk | sk)R̃(sk, xk) + ¬π(xk | sk)

(
b+ γmin

s′
V (s′)

))
(39)

+ γn
∑

s̄1:n,x̄1:n

n−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si)V (sn) (40)

By applying the extended Bellman equation for the lower bound Vπ iteratively n times, we obtain:

Vπ(s) =

n∑
k=1

∑
s̄1:k,x̄1:k

γk−1
k−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si) (41)

·
(
π(xk | sk)R̃(sk, xk) + ¬π(xk | sk)

(
b+ γmin

s′
Vπ(s

′)
))

(42)

+ γn
∑

s̄1:n,x̄1:n

n−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si)Vπ(sn) (43)

Therefore,

max
s

∣∣∣E [Rt
(n) | St = s

]
− Vπ(s)

∣∣∣ ≤ γmax
s

∣∣V (s)− Vπ(s)
∣∣ (44)

This means that any n-step return is a contraction in the max norm, and therefore, by applying [Jaakkola et al., 1994,
Theorem 1], it converges to Vπ(s).

In the second stage, we show that by applying the updates of Alg. 1 for n successive steps, we perform the same update by
using the n-step adjusted return Rt

(n). The eligibility trace for state s can be written as, for tn ∈ t(s),

et(s) = γt−tn
t∏

i=tn+1

πi. (45)

2We abuse notation a bit and ignore the expected value operator E [·] outside.



We have

n∑
k=1

et+k−1(s)δt+k−1(s) (46)

=

n∑
k=1

γk−1
t+k−1∏
i=t+1

πi

(
πt+k (yt+k + γV (st+k)) + πt+k

(
b+ γmin

s′
V (s′)

)
− V (st+k−1)

)
(47)

=

n−1∑
k=0

γk
(
πt+kyt+k + ¬πt+k

(
b+ γmin

s′
V (s′)

)) t+k−1∏
i=t

πi + γnV (st+n)

t+k−1∏
i=t

πi − V (st) (48)

= Rt
(n) − V (st) (49)

Since C-TD(λ) is equivalent to applying a convex mixture of n-step updates, and each update converges to correct lower
bounds Vπ for the state value functions, Alg. 1 converges to correct lower bounds as well.

Theorem 4. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the actions chosen at each state,
let parameters w and s∗ be defined as follows: (1) Lower Bound Qπ: w = a and s∗ = argmins

∑
x′ π(x′ | s)Qt(s, x

′);
(2) Upper Bound Qπ: w = b and s∗ = argmaxs

∑
x′ π(x′ | s)Qt(s, x

′). Then, Alg. 2 with offline updating converges with
probability 1 to lower bound Qπ and upper bound Qπ , respectively, under the usual step-size conditions on α.

Proof. We will focus on the convergence of lower bound Qπ(s, x); the proof for the upper bound Qπ(s, x) follows
analogously. This proof is structured in two stages. Let Qn denote the n-step tree backup estimator defined in Eq. (18). First
we show that E [Qn(s, x)]−Qπ(s, x) is a contraction using a proof by induction.

Let Q be the current estimate of the lower bound for the value function. For n = 1,

max
s,x

∣∣E [Q1(s, x)]−Qπ(s, x)
∣∣ (50)

= max
s,x

∣∣∣∣P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Q(s′, x′)

)
(51)

+ P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
(52)

− P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Qπ(s
′, x′)

)
(53)

− P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Qπ(s
′, x′)

)∣∣∣∣ (54)

≤ γmax
s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (55)

For the induction step, we assume that

max
s,x

∣∣E [Qn(s, x)]−Qπ(s, x)
∣∣ ≤ γmax

s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (56)

Next we want to show that the same holds for Qn+1(s, x). We can rewrite Qn+1(s, x) as follows,

Qn+1(s, x) = 1xt=x

(
yt +

∑
x′

(
1x′ ̸=xπ(x

′ | st+1)Q(st+1, x
′) + 1x′=xQn(st+1, x)

))
(57)

+ 1xt ̸=x

(
w +

∑
x′

π(x′ | s∗)Q(s∗, x′)

)
(58)



We must have

max
s,x

∣∣E [Qn+1(s, x)]−Qπ(s, x)
∣∣ (59)

= max
s,x

∣∣∣∣P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′) (60)

1x′ ̸=xQ(s′, x′) + 1x′=xE [Qn(s
′, x)]

)
(61)

+ P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
(62)

− P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Qπ(s
′, x′)

)
(63)

− P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Qπ(s
′, x′)

)∣∣∣∣ (64)

≤ γmax
s,x

∣∣∣∣P (x | s)γ
∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)1x′ ̸=x

(
Q(s′, x′)−Qπ(s

′, x′)
)

(65)

+ 1x′=xE
[(
Qn(s

′, x)−Qπ(s
′, x′)

)]
(66)

+ P (¬x | s)min
s′

∑
x′

π(x′ | s′)
(
Q(s′, x′)−Qπ(s

′, x′)
) ∣∣∣∣ (67)

≤ γmax
s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (68)

By applying [Jaakkola et al., 1994, Theorem 1], we can conclude that any n-step adjusted return converges to the correct
lower bound for the state-action value function. Since all the n-step returns converge to Qπ , any convex linear combination
of n-step returns also converges to Qπ .

For the second part of the proof, we show that C-TB(λ) with λ = 1 for n steps is equivalent to using Qn. The eligibility
trace for a state-action pair (s, x) can be rewritten as:

et(s, x) = γk
t+k−1∏
i=t+1

πi+11xi=x. (69)

By adding and subtracting the weighted action value πt+k1xt+k=x for the action taken on each step from the return, and
regrouping, we have

Q(st, x) +

n∑
k=1

γk−1
t+k−1∏
i=t+1

πi+11xi=x

(
1xt+k=x

(
yt+k +

∑
x′ ̸=x

π(x′ | st+k+1)Q(st+k+1, x
′)

)
(70)

+ 1xt+k ̸=x

(
w +min

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
−Q(st+k, x)

)
(71)

= Q(st, x) +

n∑
k=1

et+k(st, x)δt+k(x) (72)

This concludes the proof.

C EXPERIMENTAL SETUPS

In this section, we provide details on the experimental setups and additional discussion on the simulation environment.
All experiments were performed on a 2021 MacBook Pro with 16GB memory, implemented in Python. The simulation
environment is built upon the Gymnasium framework [Brockman et al., 2016], and the Minigrid environment [Chevalier-
Boisvert et al., 2023]. We will release the source code with the camera-ready version of the manuscript.



(a) (b)

Figure 8: Trajectories sampled from the interventional transition distribution T .

Windy Gridworld Our simulation builds on two Windy Gridworld environments adapted from the Safe AI Gridworlds
examples in [Leike et al., 2017]. Figs. 2 and 6 shows the graphical representations of these two environments. The red
triangle represents the agent, and the green square represents the goal state. The agent can take five actions Xt - up, down,
right, left, and stay-put. The agent receives a constant reward Yt ← 1 if it reaches the goal state. On the other hand,
the task fails, and the agent receives no reward (Yt ← 0) if it steps into the lava (orange tiles) on its way.

Additionally, the agent’s movement is affected by the wind direction Ut, which could take five values at each time-step,
including - east, south, west, north, and no-wind. The distribution of the wind direction depends on the agent’s
location. Fig. 8 shows the detailed parametrizations of probability distributions over wind directions for every position.
In general, the wind tempts to push the agent toward the lava; the closer the agent gets to the lava, the stronger the wind
becomes. If the agent decides to move (i.e., Xt ← up,down,right,left), its next state of the agent is shifted by
both its action and the wind direction through the mechanism St+1 ← St +Xt + Ut. Otherwise, the agent will stay put
(Xt ← stay-put) at its current position regardless of the wind direction, i.e., St+1 ← St.

(a) (b)

Figure 9: Optimal policies in Windy Gridworlds for the agent
that is unable to sense the wind direction.

Behavior Policy To generate offline data, we use the
observed trajectories of an optimal agent that is able to
sense the wind direction and make the optimal decision.
To compute such behavioral policies, we apply value it-
eration in the ground-truth models using both the agent’s
position St and the wind direction Ut as state variables.

Target Policy We are interested in evaluating the opti-
mal policies in Windy Gridworlds for the agent that can-
not sense the wind direction. Detailed parametrizations of
target policies are described in Fig. 9. These policies are
obtained by applying policy iteration in the ground-truth
model using the agent’s position as the current state.
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