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Abstract

Structural learning is arguably one of the most challenging
and pervasive tasks found throughout the data sciences. There
exists a growing literature that studies structural learning in
non-parametric settings where conditional independence con-
straints are taken to define the equivalence class. In the pres-
ence of unobserved confounders, it is understood that non-
conditional independence constraints are imposed over the
observational distribution, including certain equalities and
inequalities between functionals of the joint distribution. In
this paper, we develop structural learning methods that lever-
age additional constraints beyond conditional independencies.
Specifically, we first introduce a score for arbitrary graphs
combining Watanabe’s asymptotic expansion of the marginal
likelihood and new bounds over the cardinality of the exoge-
nous variables. Second, we show that the new score has desir-
able properties in terms of expressiveness and computability.
In terms of expressiveness, we prove that the score captures
distinct constraints imprinted in the data, including Verma’s
and inequalities’. In terms of computability, we show proper-
ties of score equivalence and decomposability, which allows
us, in principle, to break the problem of structural learning into
smaller and more manageable pieces. Third, we implement
this score using an MCMC sampling algorithm and test its
properties in several simulation scenarios.

1 Introduction
Learning the causal structure underlying a particular
phenomenon from data is a fundamental problem across the
data sciences. One of the common approaches in the field of
causal discovery models the underlying system as a causal
model represented by a causal graph, where nodes denote
random variables (measured or latent) and directed edges
denote causal effects from tails to arrowheads (Pearl 2009;
Spirtes et al. 2000; Peters, Janzing, and Schölkopf 2017).
The task is then to piece together the constraints found in
the data (and implied by the underlying, unobserved causal
system) to infer the corresponding causal graph.

There are a variety of different types of statistical
constraints imposed by the underlying causal system into
the observed data with distribution P pV q. For example, a
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d-separation between nodes in a causal graph induces a
corresponding conditional independence between variables
in V . The reverse implication, i.e. that each conditional
independence in data implies a corresponding d-separation
in the underlying causal graph (known as faithfulness),
serves as a statistically testable constraint to narrow the class
of compatible graphs (Pearl 1988; Meek 1995; Uhler et al.
2013; Zhang 2006; Marx, Gretton, and Mooij 2021). This
is the cornerstone assumption for a plethora of structure
learning algorithms (Verma and Pearl 1990; Glymour,
Scheines, and Spirtes 2014; Spirtes et al. 2000). When all
variables are observable, d-separation statements capture all
testable constraints implied by the underlying causal model
(Verma and Pearl 1990).

This is not the case in the presence of latent variables that
are typically used to represent systems involving unobserved
confounding. Such causal models are known to induce dis-
tributions over observed variables that are defined by more
complex statistical constraints, not necessarily of the condi-
tional independence type. The earliest example was given
by Verma and Pearl (Verma and Pearl 1990), in which two
graphs, shown in Figs. 1c and 1d, imply the same set of condi-
tional independence constraints and yet can be distinguished
because they imply an equality between different function-
als of P pV q. In particular, only the Verma graph in Fig. 1c
entails the equality

ÿ

x

P pz | x, yqP pxq “
ÿ

x

P pz | x, y, wqP px | wq. (1)

Another example is given by the Instrumental Variable (IV)
graph in Fig. 1a. While the IV graph does not impose any con-
ditional independencies between variables, compatible data
distributions (with discretely-valued observables) P px, y, zq

must satisfy the inequality, first shown by Pearl (Pearl 1995),
ÿ

y

max
z

P px, y | zq ă

ÿ

u2,y

max
z

P px | z, u2qP py | x, u2qP pu2q ď 1. (2)

The same inequality does not hold in the (otherwise
statistically equivalent) unconstrained graph in Fig. 1b. In
systems with discrete observables, distributions induced by
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causal graphs are indeed always restricted whenever two
observed variables are not directly connected, that is are
neither adjacent nor subject to unobserved confounding
(Evans 2016). For example, it is the structural separation
between Z and Y in Fig. 1a that induces an inequality
constraint, not present in Fig. 1b due to the bi-directed edge
Z L9999K Y . By adopting the reverse implication, any
statistical (in)equality constraint could be used to distinguish
between competing causal explanations from observational
data.

Early structure learning approaches, starting with the
IC/PC algorithms in the context of full observability, and
the IC˚/FCI algorithms in the presence of unobserved
confounding, developed themselves, as well as the causal
abstractions involved, around conditional independence
testing and faithfulness assumptions (Verma and Pearl
1990; Spirtes et al. 2000). In particular, to reason about
unobserved confounding, the latter class of methods
considers a special class of graphs, known as Maximal
Ancestral Graphs (MAGs), that explicitly associates every
separation in the graph with a corresponding conditional
independence in P pV q (Richardson and Spirtes 2002). The
MAG representation of equivalence classes of causal graphs
thus loses the finer granularity in induced distributions
encoded by (in)equality constraints. For example, both pairs
of causal graphs in Fig. 1 are given by the same MAGs, as
both encode the same set of conditional independencies (and
ancestral relations). MAGs are also a popular construct for
an alternative class of algorithms known as score-based,
that instead search for the MAG G maximizing the model
posterior P pG | V q or an approximation thereof (Gelman
et al. 1995; Heckerman, Meek, and Cooper 1999; Chickering
2002a,b). The most notable example is the Bayesian
Information Criterion (BIC) that can be derived as an
asymptotic approximation to P pG | V q for distributions
defined by MAGs with a Gaussian latent structure (and
more general curved exponential models (Haughton 1988;
Schwarz 1978)). Several more general causal abstractions,
such as discrete chain graph models (Drton 2009a), fully
bi-directed graph models (Drton and Richardson 2008), and
discrete nested Markov models (Richardson et al. 2017) have
also been shown to be curved exponential models and can be
scored consistently with the BIC.

Despite the progress achieved so far, there exists no causal
discovery algorithm that accounts for inequality constraints
in the space of general causal graphs. This paper proposes a
new score that distinguishes between causal graphs leverag-
ing both equality and inequality constraints in data and ap-
plies to systems with discretely valued observables and arbi-
trarily defined exogenous variables. Building on Watanabe’s
asymptotic expansion of the marginal likelihood (Watanabe
2009) and bounds over the cardinality of exogenous variables
(Rosset, Gisin, and Wolfe 2018; Zhang, Jin, and Bareinboim
2022), our score generalizes the BIC to the more general
class of discrete models with arbitrary latent variables. We
further prove the expressiveness power of our score, in the
sense that it captures all observable constraints in P pV q. This

implies that, in principle, any two graphs that are distinguish-
able based on P pV q can be distinguished with the proposed
score. We show also several properties that make the search
over the space of causal graphs feasible, such as decompos-
ability (only a smaller subgraph needs to be updated in each
iteration of the search procedure) and equivalence (graphs
defining the same family of observational distributions have
the same score), and propose a tractable approximation using
an MCMC sampling algorithm and can be plugged into a
search procedure for computations in practice. Finally, we
evaluate our method through simulations using various syn-
thetic datasets.

1.1 Preliminaries
We use capital letters to denote variables (X), small letters for
their values (x), bold letters for sets of variables (X) and their
values (x), and Ω for their domains of definition (x P ΩX ).
The probability distribution over variables X is denoted by
P pXq. We consistently use P pxq as abbreviations for prob-
abilities P pX “ xq. Finally, 1t¨u is the indicator function
that equals 1 if the statement in t¨u evaluates to be true.

The basic framework of our analysis rests on structural
causal models (SCMs) (Pearl 2009, Def. 7.1.1). An SCM
M is a tuple xV ,U ,F , P y where V is a set of endogenous
variables and U is a set of exogenous variables. F is a set of
functions where each fV P F decides values of an endoge-
nous variable V P V taking as argument a combination of
other variables in the system. That is, V Ð fV pPAV ,UV q

where observed parents PAV Ď V and unobserved parents
UV Ď U . Drawing values of exogenous variables U fol-
lowing P pUq induces the observational distribution over
endogenous variables V ,

P pvq “

ż

ΩU

ź

V PV

1tfV ppaV ,uV q “ vudP puq. (3)

Each SCM M is associated with a causal graph G (e.g.,
Fig. 1), that is a Directed Acyclic Graph (DAG) where nodes
represent endogenous variables V and exogenous variables
U , and arrows represent the arguments PAV ,UV of each
function fV . A path from a node X to a node Y in G is a
sequence of edges that does not include a particular node
more than once. For convenience, we will consider pro-
jections of G onto V , in which exogenous variables are
made implicit. In particular, we represent a path of the form
Vi Ð Uk Ñ Vj between endogenous Vi, Vj P V via an
exogenous Uk P U as a bi-directed edge between Vi and Vj ,
denoted by Vi L9999K Vj . We will leverage a special type
of clustering of nodes in the graph G called the confounded-
component (or c-component for short) from Tian and Pearl
(Tian and Pearl 2002). For a causal graph G, a subset C Ď V
is a c-component if any pair Vi, Vj P C is connected by a
bi-directed path in G. For example, the (implicit) exogenous
variables UZ , UXY in the IV graph in Fig. 1a corresponds
to c-components CpUZq “ tZu and CpUXY q “ tX,Y u,
respectively. Lastly, we will use standard graph-theoretic
family abbreviations to represent graphical relationships. In
particular, the set of parent nodes of X in G is denoted by
papXqG “ YXPXpapXqG ; and its capitalized version Pa



Z X Y

(a) IV

Z X Y

(b) Front-door

W X Y Z

(c) Verma

W X Y Z

(d)

Figure 1: Example of graphs. Bi-directed edges denote the presence of an unobserved confounder.

includes the argument as well, e.g. PapXqG “ papXqG YX .
For a more detailed survey on SCMs, we refer to (Pearl 2009;
Bareinboim et al. 2022).

2 Expressiveness of Scores in the Presence of
Unobserved Confounders

We will focus on Bayesian methods and their asymptotic
behaviour for scoring causal graphs G. Let P pG | v̄q be the
probability that G defines the causal structure in the underly-
ing SCM given an i.i.d sample v̄ “

␣

vpsq : s “ 1, . . . , n
(

.
Definition 1 (Bayesian scoring criterion). The Bayesian scor-
ing criterion is defined as the posterior,

P pG | v̄q 9 P pGqP pv̄ | Gq

“ P pGq

ż

Ωω

P pv̄ | G,ωqdP pω | Gq. (4)

where ω refers a particular parameterization, i.e. F , P pUq,
of the set of SCMs compatible with the functional dependen-
cies specified by G.

In systems described by arbitrary acyclic causal graphs, an
explicit approximation of the marginal likelihood P pv̄ | Gq

is typically intractable from both a conceptual and computa-
tional perspective. From a conceptual perspective, the graph
G does not define a specific latent variable structure, i.e. do-
main of U and distribution P pUq, which, in principle, may
be arbitrarily complex. The space of distributions P pV q en-
coded by such a system does not necessarily have a sys-
tematic, generic parameterization ω without making strong
assumptions on the form of F and P pUq. From a computa-
tional perspective, for large classes of SCMs, likelihoods are
typically multi-modal and complex and are challenging to
integrate over potentially high-dimensional parameter spaces.
In the following sections, we present several results to con-
sistently parameterize and estimate marginal likelihoods for
arbitrary causal graphs.

2.1 Parameterization Capturing all Observational
Constraints

We seek to develop general results without (untestable) as-
sumptions over unobserved features of the underlying SCMs,
i.e. P pUq and F . In systems of discrete observables, P pV q

has the particularity of being consistently defined by a finite
set of probabilities, irrespective of the underlying structure
P pUq and F from which it is derived. We focus our attention
on SCMs with discrete endogenous (observed) variables, that
is, each V P V taking values in a finite space of outcomes,
while each U P U is arbitrarily defined, e.g. taking values
in R, and each f P F is similarly arbitrary. For a given ar-
bitrary graph there exists a general parameterization that is

expressive enough to model any data distribution P pV q. Our
analysis rests on this special parameterization.

Proposition 1 (Prop. 2.6 (Zhang, Jin, and Bareinboim 2022)).
For any causal graph G, let M be an arbitrary SCM compat-
ible with G. The observational distribution P pV q induced by
M could be parameterized as

P pv | G,ωq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu,

(5)

where θu :“ P pU “ uq defines exogenous probabili-
ties of discrete variables U P U with cardinality dU “
ˇ

ˇΩPapCpUqq

ˇ

ˇ; and each ξ
ppaV ,uV q

V is a deterministic mapping
between finite domains ΩPAV

ˆ ΩUV
ÞÑ ΩV .

For the sake of space, all proofs are provided in Ap-
pendix B. In other words, for any SCM M there exists a
SCM N defined by ω “ pξ,θq, given by Prop. 1, such
that PM pV q “ PN pV q. A similar reasoning does not apply
for continuously-valued endogenous variables that would re-
quire continuously-valued exogenous variables and therefore
a (untestable) choice of parametric family for all variables.

For example, in the IV graph in Fig. 1a, let an observa-
tional distribution P pX,Y, Zq over binary variables X,Y, Z
be induced by an arbitrary distribution P pU1, U2q over a
continuous domain of the exogenous variables U1, U2, i.e.
given by Eq. (3). Prop. 1 implies that any P px, y, zq can be
equivalently expressed as

ÿ

u1,u2

1tξ
pu1q

Z “ zu1tξ
pz,u2q

X “ xu1tξ
px,u2q

Y “ yuθu1θu2 ,

(6)

for some value of pξZ , ξX , ξY , θu1
, θu2

q. In particular, θu1
de-

fines a distribution over a binary domain t1, 2u since |ΩU1
| “

|ΩX | “ 2; θu2
defines a discrete distribution over a finite

domain t1, . . . , 8u since |ΩU2
| “ |ΩX | ¨ |ΩY | ¨ |ΩZ | “ 8;

ξZ : ΩU2
ÞÑ ΩZ is a deterministic mapping between dis-

crete domains, etc. Statistical constraints between function-
als of P pV q, e.g. conditional independencies, automatically
correspond to explicit constraints on the parameters that de-
fine the joint distribution. For example, any parameterization
ω “ pξ,θq of P pV q compatible with the IV graph must
satisfy,

ÿ

u2,y

max
z

1tξ
pz,u2q

X “ xu1tξ
px,u2q

Y “ yuθu2
ď 1. (7)

In turn, in causal graphs such as Fig. 1b the corresponding
parameters are unconstrained.



2.2 Singular Asymptotics of the Marginal
Likelihood

For marginal likelihood computations in practice, large-
sample theory has played an overwhelming role to define
tractable approximations, i.e. scores. Schwarz’s Bayesian
Information Criterion (BIC), for example, is derived from
an asymptotic approximation around maximum likelihood
estimates in curved exponential graphical models (Haughton
1988; Schwarz 1978). This asymptotic approximation, how-
ever, does not necessarily hold in arbitrary graphs with un-
observed confounders; especially those defined by inequality
constraints.

In particular, inequalities such as Eq. (2) introduce a bound-
ary in the space of distributions entailed by the underlying
graph that induce non-regular likelihood surfaces. For exam-
ple, in a system described by the IV graph, a distribution
such that P pY “ 0, X “ 0 | Z “ zq “ P pY “ 1, X “

0 | Z “ zq “ 0.5 for z P t0, 1u, lies on this boundary.
By Prop. 1, |ΩUXY

| “ 8, and it can be shown that chang-
ing P puXY q while preserving the sums

ř

u2“0,1,2,3 P puXY q

and
ř

u2“4,5,6,7 P puXY q (up to relabelling) does not change
the likelihood P pv̄ | ω,Gq.

Figure 2: ´ logP pv̄ | ω,Gq.

The corresponding log-likelihood, using simulated data
from a boundary distribution, is given in Fig. 2 as a function
of parameters P pUXY “ 0q and P pUXY “ 1q. The colored
pattern represents the likelihood surface that concentrates in
a ridge shape along a diagonal line and defines a singular
point in the model. In effect, we are losing degrees of
freedom in our model and the asymptotic consequences of
this fact can be quite severe as approximations can no longer
rely on the likelihood around the maximum being a quadratic
surface. In general, the BIC will not reflect the asymptotic
scaling of P pv̄ | Gq defined by (in)equality constraints.

Watanabe reformulated the foundations of the asymptotic
theory of singular models using the Hironaka resolution on
singularities (Hironaka 1964; Watanabe 1999, 2001, 2009).
A distinct notion of model dimension emerges in singular
models driven by the so-called learning coefficient λG ą 0
that describes how fast the posterior distribution shrinks with
increasing sample size. In the following corollary, we estab-
lish the correct approximation to the log marginal likelihood
defined by general causal graphs with joint distributions pa-
rameterized by discrete SCMs.

Theorem 1. In discrete SCMs parameterized by Prop. 1,

´ logP pv̄ | Gq “ (8)
´ logP pv̄ | G,ω0q ` λG log n ` Opplog log nq,

where ω0 is a set of parameters that produces the true distri-
bution, and λG , called the learning coefficient, is a scalar.

This is a corollary to (Watanabe 1999, Thm. 1). In curved
exponential models, λG is directly proportional to the number
of free model parameters but it might not be in general (in
fact λG is strictly smaller than the penalty given by the BIC in
distributions with this parameterization involving (in)equality
constraints)1). In general, λG depends on the true (unknown)
data generating system G that makes this particular expres-
sion difficult to evaluate in practice.

2.3 Approximations to the Bayesian Score and
Consistency for Structure Learning

A tractable score remains elusive due to computational and
conceptual challenges of evaluating multi-modal integrals
and asymptotic approximations, respectively. This section
proposes a compromise that involves sampling based on a
tempered, i.e. less modal, version of the likelihood and prior
that, however, can be shown to relate directly to Thm. 1 and
enjoy consistency guarantees. Following (Friel and Pettitt
2008; Watanabe 2013), the idea is to estimate some expecta-
tion Eω„P pω|GqrlogP pv̄ | ω,Gqs by evaluating a less modal
distribution P β with β ă 1. We define a score SWBIC

2 for a
causal graph G and data v̄ as

SWBICpG, v̄q :“ ´Eβ logP pv̄ | G,ωq (9)

“

ş

Ωω
logP pv̄ | G,ωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

.

The significance of this definition lies in the fact that for a
consistent parameterization of P pv̄ | G,ωq, the marginal log-
likelihood logP pv̄ | Gq is provably equal to Eβ logP pv̄ |

G,ωq for some value β P r0, 1s, with the property that, for
the choice β “ 1

logn it holds, asymptotically by (Watanabe
2013, Thm. 4) that,

SWBICpG, v̄q “ ´ logP pv̄ | Gq ` Opp
a

log nq. (10)

This result shows that model selection using SWBIC approxi-
mates a Bayesian procedure seeking the model with the high-
est posterior probability, i.e. Thm. 1. However, SWBIC may
deviate from the marginal likelihood by a constant term times?
log n. For consistency of model selection, this difference

must be of lower order than the difference in logP pv̄ | Gq

between two different models, which is made precise in the
following assumptions.

1A more detailed exposition of asymptotics in singular mod-
els, including of details on thermodynamic integration and path
sampling techniques used in the following section are given in Ap-
pendix A.

2In the Bayesian model selection literature, this expression is
known as the Widely applicable Bayesian Information Criterion
(WBIC) (Watanabe 2013).



Assumption 1. If G1 is compatible with the data generating
distribution P and G2 is not, then there exists a scalar c12 ą

0 such that logP pv̄ | G1q ´ logP pv̄ | G2q ą c12n, with
probability tending to 1 as n Ñ 8.

Assumption 2. Let causal graphs G1 and G2 be defined
such that the set of distributions P1 compatible with G1 is
included in the set of distributions P2 compatible with G2.
Then, λG1

ă λG2
with probability tending to 1 as n Ñ

8, where λG1 , λG2 are the learning coefficients in Thm. 1
corresponding to G1,G2 respectively.

As the log-likelihood is the sum of logarithmic probabili-
ties for i.i.d observations, if causal graphs G1 and G2 encode
a similar number of unobserved confounders with a similar
underlying parameterization, we can expect the difference in
log-likelihoods for G1 and G2 to scale linearly with sample
size so that Assumption 1 generally holds (if close enough
models are compared). The learning coefficient λG in Thm. 1
acts as a measure of the complexity of the set of distribu-
tions induced by an SCM. Assumption 2 states that SCMs
inducing more probabilistic constraints also induce families
of distributions that are less general and thus an underly-
ing graphical model that is less complex in the sense of λG .
Both assumptions can be found in other treatments of model
selection, see e.g. (Drton and Plummer 2017). With these
assumptions, SWBIC coupled with the discrete parameteriza-
tion of the likelihood assigns the lowest (best) score to the
model imposing the fewest constraints that can represent the
generative distribution.
Theorem 2. Let P pv̄ | G,ωq be parameterized as in Prop. 1.
Under Assumptions 1 and 2, with probability tending to 1 as
n Ñ 8,
1. (Soundness) If the family of distribution compatible with

G1 includes P pV q but the family of distributions compati-
ble with G2 does not, SWBICpG1, v̄q ă SWBICpG2, v̄q.

2. (Parsimony) If the family of distributions compatible with
G1 is included in that compatible with G2 and both contain
P pV q, SWBICpG1, v̄q ă SWBICpG2, v̄q.

The first part of the theorem encodes the soundness of the
parametrization, i.e., a graph that encodes the constraints of
the original model will have a higher score than a graph that
disagrees with these constraints. The second part encodes the
idea of simplicity, which means that among two structures
that have the same generative capabilities, the simpler one
will be preferred over the more complex one. This property
is also called consistency of a score and is key to ensure
convergence to the underlying graph that summarizes the
SCM that generated the data. As a consequence of the consis-
tency of the score in the space of arbitrary causal graphs, the
score captures all statistical constraints over observational
probabilities encoded by the structure of the causal graph.
Proposition 2. SWBICpG, v̄q distinguishes between candidate
causal graphs differing on an (in)equality constraint between
functionals of P pV q with probability tending to 1 as n Ñ 8.

Intuitively, if Prop. 2 were not to hold, SWBICpG, v̄q would
not be sound or parsimonious as two candidate graphs that
disagree on (in)equality constraints also define two different
sets of compatible distributions. If the in(equality) is satisfied

in P pV q, a parsimonious score chooses the graph entailing
the (in)equality, else if the inequality is not satisfied a sound
score chooses the graph not entailing the (in)equality. It is
worth noting also that SWBIC may be interpreted as a general-
ization of the BIC score, denoted SBIC.

Proposition 3 (Eq. (32) in (Watanabe 2013)). Let P pV q

and G be the joint distribution and causal graph induced by
an SCM parameterized by curved exponential models. Then,
with probability tending to 1 as n Ñ 8, SWBICpG, v̄q “

SBICpG, v̄q ` Opp1q.

3 Properties of Score for Causal Discovery
and Computation

This section describes properties of the proposed score SWBIC
which will be desirable for causal discovery. Our next re-
sult shows that SWBIC decomposes over c-components in the
graph.

Definition 2 (Decomposability). The score S is decompos-
able if it can be written as a sum of measures, each of which
is a function only of the variables in the c-component C and
its parents,

SpG, v̄q “
ÿ

CPCpGq

SpGPapCq, v̄PapCqq. (11)

Here GPapCq and VPapCq denote the subgraph and data,
respectively, restricted to PapCq Ď V .

Proposition 4. SWBIC is decomposable.

Decomposability will avoid the need to recompute the en-
tire score when examining a new graphical structure, which
makes the search feasible in principle. For example, to
score the IV graph in Fig. 1a, we may separately score c-
components tZu and tX,Y u, the first one being a function
of Z only while the second one being a function of tX,Y, Zu.
If we were to add an edge Z Ñ Y we would only need to
recompute the updated c-component tX,Y u as the one for
tZu can be re-used. An important observation is that statis-
tical constraints in data are usually not sufficient to narrow
down a unique causal graph and, in practice, multiple graphs
may encode the same constraints as those of the true graph.
This set forms an equivalence class that can be defined by the
SWBIC.

Definition 3 (Score equivalence). A scoring criterion S is
score equivalent if, for any pair of causal graphs G1 and
G2 that are compatible with the same family of distributions,
SpG1, v̄q “ SpG2, v̄q with probability tending to 1 as n Ñ

8.

Proposition 5. SWBIC is score equivalent.

This proposition formalizes the intuition that if the family
of distributions entailed by two graphs are equal then also
their scores will be equal. For example, adding a bi-directed
edge Z Ø X to the graph in Fig. 1a does not remove/add
any constraints on the set of induced distributions P pV q and
has, therefore, the same score.



3.1 Computing the Score
We present in this section an MCMC sampler to approximate
the expectation defining SWBIC in Eq. (9). Let ω “ pξ,θq,
where ξ “ tξ

ppaV ,uV q

V : V P V ,PaV Ă V ,UV Ă Uu

and θ “ tθU : U P Uu denote all possible functional
assignments and exogenous probabilities, respectively. More
specifically, ξppaV ,uV q

V are parameters that take values in
ΩV and represent the assignment of V given its parents
and exogenous variables, i “ 1, . . . , d. There is one such
parameter of dimensionality |ΩV | for each combination
of realization of parent variables paV and exogenous
variables uV that are defined by the candidate causal graph
G. θU stands for the vector of probabilities that defines
the discrete distribution P pU “ uq over its finite domain
u P t1, . . . , dUu.

SWBIC is computed by setting the tempering temperature
β :“ 1{ log n and prior over parameters given G (possibly
uninformative), and drawing Monte Carlo samples of the
posterior distribution P pξ,θ | v̄,Gqβ at temperature β. All
parameters, their dimensionalities, and space of potential val-
ues are determined by the structure of the candidate graph
and the observed data v̄, but also depend on (unobserved)
exogenous variables ū “ tupsq : s “ 1, . . . , nu. For every
V P V ,@paV ,uV , the functional assignment parameters
ξ

ppaV ,uV q

V are drawn uniformly in the discrete domain ΩV .
For every U P U , exogenous probabilities θU with dimen-
sion dU “

ś

V PCU

ˇ

ˇΩPapV q

ˇ

ˇ are drawn from a prior Dirich-
let distribution θU “ pθ1, . . . , θdU

q „ Dirpα1, . . . , αdU
q,

with hyperparameters α1, . . . , αdU
. Fix some initial value

for all unobserved quantities pu, ξ,θq, and sample each one
iteratively conditioned on the current values of the remaining
terms with a Metropolis step.

• Exogenous variables U psq are mutually independent given
V psq, ξ,θ and thus we can sample each separately using
the conditional

P pupsq |vpsq, ξ,θq9 P pupsq,vpsq | ξ,θq

“
ź

V PV

1tξ
pu

psq

V ,pa
psq

V q

V “ vpsqu
ź

UPU

θupsq .

• Similarly, for fixed paV ,uV , parameters ξ
ppaV ,uV q

V are
mutually independent given v̄, ū,θ. As they represent a
mapping between variables, its conditional distribution
is given by P pξ

ppaV ,uV q

V “ v | v̄, ūq “ 1 if there ex-
ists a sample pvpsq,pa

psq

V ,u
psq

V q that fixes the mapping
pa

psq

V ,u
psq

V ÞÑ vpsq. Otherwise, P pξ
puV ,paV q

V “ vq “ qv,
where q “ tqv : v P ΩV u is a proposal distribution that
samples ξpuV ,paV q

V in ΩV with probabilities that are uni-
formly updated in a small neighborhood of the previous
parameter value in each iteration of the sampler.

• Fix U P U . Given v̄, ū, θU is independent of ξ and is given
by a Dirichlet distribution θU | v̄, ū „ Dir pβ1, . . . , βdU

q

where βj :“ αj ` cj where cj is updated in each iteration
of the sampler using a uniform proposal distribution, e.g.
cj „ Uniformpcj ´ ϵ, cj ` ϵq and ϵ ą 0 a small scalar.

Let pξptq,θptqq be the t-th sample in the Markov chain.
A new sample pξpt`1q,θpt`1qq is recorded with an accep-
tance ratio given by P pξpt`1q,θpt`1q | v̄,Gqβ{P pξptq,θptq |

v̄,Gqβ where,

P pξ,θ | v̄,Gqβ 9

exp t´β logP pv̄ | ξ,θ,Gq ` logP pξ,θ | Gqu .

Finally, SWBIC’s approximation:

ŜWBICpG, v̄q :“ ´
1

T

T
ÿ

t“1

logP pv̄ | G, ξptq,θptqq. (12)

Our next results establish finite-sample deviation bounds
for empirical estimates ŜWBIC defined in Eq. (12). In particu-
lar, we apply standard concentration inequalities (Hoeffding
1994, Thm. 2) in Prop. 6 to determine a sufficient number of
independent posterior samples T required for obtaining accu-
rate estimates of the “population-level” score SWBIC defined
in Eq. (9). For this, in addition, we will require a positivity
constraint on the likelihood.
Proposition 6. Assume that the absolute value of logP pv̄ |

G, ξptq,θptqq, t “ 1, . . . , T be bounded from above by M ą

0. Then, for δ P p0, 1q we have that with probability at least
1 ´ δ,
ˇ

ˇ

ˇ
ŜWBICpG, v̄q ´ SWBICpG, v̄q

ˇ

ˇ

ˇ
ď

c

1

2T
M2 logp2{δq. (13)

4 Experiments: Quality of Scores
This section evaluates the ability of the proposed score
to distinguish between graphs that differ in equality and
inequality constraints3.

We consider variations of the IV (Fig. 1a) graph that are
designed to consider the presence and absence of inequality
constraints4. The task is to score these variations and com-
pare them to scores of the ground truth IV graph, based on
data generated from 100 different SCMs M “ xV ,U ,F , P y

compatible with the ground truth graph. Each SCM is
specified as follows. Exogenous distributions P pUq, U P U
are randomly chosen from a set of continuous distributions
tGaussian, Exponential, Gumbel, Uniformu; functional asso-
ciations are defined by V Ð gpfpβPaV ` αUV qq, V P V ,
with f randomly chosen as a linear, trigonometric (cos, sin),
or logarithmic function; α, β uniformly chosen in r0, 1s

with the required dimensionality; and g a step function
used to define a binary outcome. For comparison, we
consider two implementations of the BIC used in the
literature: SBIC1

:“ ´2 logP pv̄ | G, ω̂q ` |Ωω| log n, and
SBIC2 :“ ´2 logP pv̄ | G, ω̂q ` p2|V | ` |E |q log n, where
|E | denotes the number of directed and bi-directed edges.
Our results are summarized in Fig. 3. Each bar gives the

3Further algorithmic details, as well as evaluations of decompos-
ability and equivalence, can be found in Appendices C and D.

4Plots of graphs are given in Fig. 5 (Appendix C). A similar anal-
ysis on the Verma graph (Fig. 1c), designed to consider the presence
and absence of equality constraints, is given in Appendix D.



(a) IV vs DAG. (b) IV vs Front-door. (c) IV vs Unconstrained. (d) IV vs Equivalent.

Figure 3: Quality of scores. The horizontal gray line indicates the theoretical optimum.

proportion of experiments (out of 100) in which the correct
causal explanation, i.e. the IV graph, is scored better than a
competing graph that differs in subtle ways.

By design, baseline scores do not correctly appreciate
the complexity of the class of distributions implied by the
graphs which can be illustrated in specific comparisons. For
instance, Fig. 3a compares the ground truth IV graph with an
unconstrained DAG that voids the inequality constraint while
having the same number of edges but fewer parameters. In
particular, SBIC1 incorrectly favors the DAG in most cases as
a consequence of its lower complexity term |Ωω| log n, and
SBIC2 scores both graph equally on average as both graphs
have equal fit and number of edges |E |. In turn, Fig. 3b con-
siders an unconstrained graph with both the same number of
edges and parameters as the IV model (therefore equal, on
average, SBIC1

and SBIC2
scores). The IV and unconstrained

graphs can be distinguished empirically due to the differing
inequality constraint. In contrast, Fig. 3c is also considered
an unconstrained graph although this time with fewer edges
and fewer parameters: and thus better SBIC1 and SBIC2 scores.
Fig. 3d considers a model for P pV q that is equivalent to the
IV model, i.e. Z Ñ X is replaced with Z L9999K X (and
thus have a different number of parameters) as both induce
a single inequality constraint. Theoretically, the two alterna-
tives cannot be distinguished and we would expect scores to
be equal on average. We conclude with the observation that
across variations of different graphs and sample sizes, SWBIC
correctly scores graphs based on inequality constraints and
appreciates equivalence in the space of distributions P pV q

induced by graphs even if those have differing number of
edges or parameters.

5 Experiments: Structure Learning
This section explores the use of SWBIC within search
algorithms to recover the causal graph that best describes the
statistical constraints found in data. We adopt a greedy search
algorithm to use the decomposable nature of SWBIC, denoted
GS-SWBIC; pseudocode is given in Appendix C.1. Several
methods exist for searching over spaces of graphs, including
greedy search (Triantafillou and Tsamardinos 2016), exact
dynamic programming (Rantanen, Hyttinen, and Järvisalo
2021), integer programming (Chen, Dash, and Gao 2021),
and gradient-based optimization (Bhattacharya et al. 2021;
Bellot and van der Schaar 2021) methods. Existing imple-
mentations rely on Drton’s Residual Iterative Conditional
Fitting algorithm for maximum likelihood estimation of the
BIC score which applies to linear Gaussian models (Drton
and Richardson 2012). Empirical comparisons are made

with Gaussian-based continuous-optimization algorithm
(DCD) (Bhattacharya et al. 2021) for recovering ancestral
and bow-free graphs, the GES algorithm (Chickering 2002a)
for recovering directed graphs, and the GSMAG algorithm
(Triantafillou and Tsamardinos 2016) for recovering MAGs.

We start by considering graphs returned by each method fit
on random datasets from the IV, Verma, and frontdoor models
defined in Sec. 4. The objective is to understand the relative
gain of searching over larger spaces of graphs, beyond the
spaces of bow-free, ancestral, and directed graphs considered
in the literature. The IV graph is in neither of these classes,
the Verma graph is bow-free, and the frontdoor graph is bow-
free. Fig. 4 plots Bayes factors in comparison to the optimal
DAG (inferred with GES). There is some variation over dif-
ferent datasets although we observe that on average searching
over larger spaces eventually returns graphs that are more
likely for the IV and Verma models (Bayes factor larger than
1). The frontdoor graph is the only model that is empirically
indistinguishable from a fully connected DAG, which sets a
bound of 1 in theory on the Bayes factor. Next, we consider
comparisons on Sachs (Sachs et al. 2005) and Lung cancer
(Lauritzen and Spiegelhalter 1988) benchmark datasets (with
some variables omitted to induce unobserved confounding).
Fig. 4 gives the mean and standard deviation of SWBIC scores
of the graph returned by each method on 5 random draws of
the simulators. There is variability for all methods on differ-
ent datasets due to the returned graph and due to the score
evaluation. No method significantly outperforms, which is
expected as these graphs, to our knowledge, do not entail
(in)equality constraints beyond conditional independencies.
There is some evidence that greedy search in the space of
arbitrary causal graphs can be viable for causal discovery.

6 Conclusions
We investigated the problem of learning the causal structure
underlying a phenomenon of interest in discrete models with
arbitrary latent dependencies. Our contribution is a new score
based on the asymptotic expansion of the marginal likelihood
using a parameterization that is expressive enough to capture
consistently both equality and inequality constraints in the
observational data. To our knowledge, this score is the first
to apply to arbitrary models of unobserved confounding. We
then proposed a tractable approximation to this score that
involves a posterior sampling algorithm using power posteri-
ors and that enjoys desirable properties for causal discovery
such as score decomposition and score equivalence that make
searching over the space of causal graphs feasible.

We investigated the problem of learning the causal struc-



n GS-SWBIC DCD (Bow.) DCD (Anc.) GSMAG GES

Sachs 200 1077 (13) 1132 (15) 1157 (15) 1198 (13) 1236 (11)
Sachs 500 2653 (28) 2635 (29) 2643 (31) 2791 (25) 3311 (21)
Sachs 1000 5393 (51) 5401 (40) 5405 (40) 5412 (84) 6610 (32)
Lung 200 350 (18) 347 (16) 360 (20) 387 (10) 329 (5)
Lung 500 825 (31) 827 (31) 852 (32) 856 (27) 821 (13)
Lung 1000 1656 (60) 1653 (56) 1663 (69) 1668 (55) 1656 (12)

(a) Mean score and standard deviation. Lower values indicate better fit. (b) Bayes factor vs optimal DAG.

Figure 4: Structure learning evaluations.

ture underlying a phenomenon of interest in discrete models
with arbitrary latent dependencies. Our contribution is a new
score based on the asymptotic expansion of the marginal like-
lihood using a parameterization that is expressive enough to
capture consistently both equality and inequality constraints
in the observational data. To our knowledge, this score is the
first to apply to arbitrary models of unobserved confounding.
We then proposed a tractable approximation to this score that
involves a posterior sampling algorithm using power posteri-
ors and that enjoys desirable properties for causal discovery
such as score decomposition and score equivalence that make
searching over the space of causal graphs feasible.We then
proposed a tractable approximation to this score that involves
a posterior sampling algorithm using power posteriors and
that enjoys desirable properties for causal discovery such as
score decomposition and score equivalence that make search-
ing over the space of causal graphs feasible.
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Appendix for "Scores for Learning Discrete
Causal Graphs with Unobserved Confounders"

This Appendix includes
• Derivation of (in)equality constraints and background on

asymptotic theory in Appendix A.
• Proofs in Appendix B.
• Experimental and implementation details in Appendix C.
• Additional experiments in Appendix D.

A Background
A.1 (In)equality Derivations
The instrumental variables (IV) model Fig. 1a is perhaps to
most extensively studied system in the causal inference liter-
ature. It arises naturally in randomized trials with imperfect
compliance, in which Z represents a randomized treatment
assignment, X the treatment actually taken by the subject,
and Y an outcome; U represents unmeasured confounding
factors which may affect both the probability of the subject
taking the treatment and the outcome of interest.

Making no assumptions on the space of definition of U ,
and if X is continuous, P pV q is unconstrained (Bonet 2013).
However, if the observed variables have finite and discrete
state spaces, then the observed distribution obeys the instru-
mental inequality,

ÿ

y

max
z

P px, y | zq ď 1.

Following (Pearl 1995), it can be shown with the following
argument. Note that,

P px, y | zq “
ÿ

u2

P px | z, u2qP py | x, u2qP pu2q.

For a particular value of px, yq, let z˚ “ maxz P px, y | zq.
Thus,
ÿ

y

P px, y | z˚q “
ÿ

y,u2

P px | z˚, u2qP py | x, u2qP pu2q.

For each y, P px | z˚, u2q ď 1,
ÿ

y

P px, y | z˚q ď
ÿ

y,u2

P py | x, u2qP pu2q ď 1.

Substituting z˚ and noting that this relationship holds for any
x we get,

ÿ

y

max
z

P px, y | zq ď 1.

Verma or "dormant" constraints can be derived by consid-
ering statistical independence statements in interventional
distributions P pV | dopxqq that can nevertheless be written
as functionals of observational distributions P pV q. In other
words, Verma constraints can be reasoned with by consid-
ering d-separation statements in graphs in which incoming
edges into selected nodes are removed. For the Verma graph

(Fig. 1c) in particular it holds that under intervention on Y ,
W and Z are d-separated, which implies by Rule 1 of the
do-calculus that

P pz | w, dopyqq “ P pz | dopyqq.

Both of this quantities are identifiable,

P pz | dopyqq “
ÿ

x

P pz | x, yqP pxq

P pz | w, dopyqq “
ÿ

x

P pz | x, y, wqP px | wq

which delivers the equality constraint.

A.2 Regular Models
This section states the asymptotic expansion of the marginal
likelihood for regular models. A statistical model is called reg-
ular if the parameter which minimizes the Kullback-Leibler
(KL) divergence of a true distribution and the statistical model
is unique and the Hessian matrix of the KL divergence at the
minimum point is regular. The technique that is commonly
used is Laplace’s method, which is to expand the log like-
lihood of the data around the maximum likelihood value,
and then approximate the peak using a multivariate-normal
distribution.
Theorem 3 (Laplace’s Approximation). Suppose that
logP pv | G,ωq as a function of ω is twice differentiable
and convex, i.e., the Hessian of logP pv | G,ωq is positive
definite, the minimum of logP pv | G,ωq on Ωω is achieved
on a single internal point ω0, and P pω | Gq is continuous
and P pω0 | Gq ‰ 0. The marginal likelihood can be written

´P pv̄ | Gq “

ż

Ωω

expt´ logP pv̄ | G,ωqudP pω | Gq,

If the integral absolutely converges, then, as n Ñ 8,

´P pv̄ | Gq 9 expt´ logP pv̄ | G,ω0qund{2. (14)

where Ωω Ă Rd.
See for example (Shen and González 2021) for a proof of

this statement. The Bayesian Information Criterion (BIC) is
defined by taking logarithms from this expression (Schwarz
1978; Haughton 1988).

In systems parameterized by Gaussian distributions,
Laplace’s approximation holds (Richardson and Spirtes 2002)
and the BIC can be shown to take the convenient form,

´ logP pv̄ | G,ω0q ` p|E | ` 2|V |q{2 log n, (15)

where |E | denotes the number of edges and |V | the number
of endogenous variables as the number of parameters cor-
respond to the mean and variance for each node, and one
coefficient per directed or bi-directed edge. BIC is an asymp-
totically consistent scoring criterion for MAGs (Richard-
son and Spirtes 2002) and returns the same score for all
Markov equivalent MAGs, i.e. MAGs that encode the same
d-separation statements, as Markov equivalent MAGs share
adjacencies. This further justifies the fact that existing scores,
most often based on this asymptotic approximation of the
marginal likelihood, will not capture differences in more
general (in)equality constraints.



A.3 Singular Models

A statistical model is singular if either the parameter which
minimizes the Kullback-Leibler (KL) divergence of a true
distribution and the statistical model is not unique or the
Hessian matrix of the KL divergence at the minimum point
is singular. One of the difficulties in the analysis of singu-
lar models is that the optimal parameter set is not a single
point anymore but an analytic set or variety. Such a set usu-
ally involves multiple singularities (i.e. points in that set that
form a cusp in the manifold) that render the Fisher infor-
mation matrix singular. The log-likelihood can no longer be
approximated by a quadratic form of the parameter in the
neighbourhood of these singularities. A model is singular if
there are parts of the parameter space in which the Fisher
information is singular. A lot of statistical models are singu-
lar, for example, neural networks, reduced rank regressions,
normal mixtures, binomial mixtures, hidden Markov mod-
els, stochastic context-free grammars, Bayesian networks
with latent variables, and so on. In general, if a statistical
model contains hierarchical structure, sub-module, or hidden
variables, then it is singular (Watanabe 2009).

Example of singularity in graphical model with unob-
served confounders For example, consider a simple graph-
ical model defined by the graph tY Ð U Ñ Xu where U
is an implicit latent variable that causally influences binary
observables X and Y . As given by the canonical parameteri-
zation in Prop. 1, without loss of generality we may assume
the domain of U to be finite and of cardinality 4. The true ob-
servational distribution is given by the following expression,

P px, yq “ ωx
Xp1 ´ ωXq1´xωy

Y p1 ´ ωY q1´y

whereas, the joint distribution parameterization according to
our latent variable model is given by:

P px, yq

“ P pU “ 0q ¨ P px | U “ 0qxp1 ´ P px | U “ 0qq1´x

ˆ P py | U “ 0qyp1 ´ P py | U “ 0qq1´y

` P pU “ 1q ¨ P px | U “ 1qxp1 ´ P px | U “ 1qq1´x

ˆ P py | U “ 1qyp1 ´ P py | U “ 1qq1´y

` P pU “ 2q ¨ P px | U “ 2qxp1 ´ P px | U “ 2qq1´x

ˆ P py | U “ 2qyp1 ´ P py | U “ 2qq1´y

` P pU “ 3q ¨ P px | U “ 3qxp1 ´ P px | U “ 3qq1´x

ˆ P py | U “ 3qyp1 ´ P py | U “ 3qq1´y

“ θ0 ¨ pξ
p0q

X qxp1 ´ ξ
p0q

X q1´xpξ
p0q

Y qyp1 ´ ξ
p0q

Y q1´y

` θ1 ¨ pξ
p1q

X qxp1 ´ ξ
p1q

X q1´xpξ
p1q

Y qyp1 ´ ξ
p1q

Y q1´y

` θ2 ¨ pξ
p2q

X qxp1 ´ ξ
p2q

X q1´xpξ
p2q

Y qyp1 ´ ξ
p2q

Y q1´y

` θ3 ¨ pξ
p3q

X qxp1 ´ ξ
p3q

X q1´xpξ
p3q

Y qyp1 ´ ξ
p3q

Y q1´y

The variety of optimal parameters are given by the union of
the following sets:

tθ0 “ 1, ξ
p0q

X “ ωX , ξ
p0q

Y “ ωY uY

tθ1 “ 1, ξ
p1q

X “ ωX , ξ
p1q

Y “ ωY uY

tθ2 “ 1, ξ
p2q

X “ ωX , ξ
p2q

Y “ ωY uY

tθ3 “ 1, ξ
p3q

X “ ωX , ξ
p3q

Y “ ωY uY

tξ
p0q

X “ ξ
p1q

X “ ξ
p2q

X “ ξ
p3q

X “ ωX ,

ξ
p0q

Y “ ξ
p1q

Y “ ξ
p2q

Y “ ξ
p3q

Y “ ωY u,

which has singularities, for example, at the point:

pθ0, ξ
p0q

X , ξ
p0q

Y , ξ
p1q

X , ξ
p1q

Y , ξ
p2q

X , ξ
p2q

Y , ξ
p3q

X , ξ
p3q

Y q (16)
“ p1, ωX , ωY , ωX , ωY , ωX , ωY , ωX , ωY q. (17)

Effectively whenever the parameters of P px, y | U “ uq

for all u agree we lose a degree of freedom in our model:
changing P pU “ uq no longer affects the joint distribution
of our data. The asymptotic consequences of this behaviour
are important.

Asymptotic approximations in singular models Watan-
abe reformulated the foundations of asymptotic theory of
singular models relying on the (Hironaka 1964)’s resolution
on singularities. Two distinct concepts of dimension of a
model emerge from singular learning theory: the singular
fluctuation that determines how strongly the posterior
distribution fluctuates, and the learning coefficient and
multiplicity that determine how fast the posterior distribution
shrinks with increasing sample size. The singularities
in the parameter space can be analyzed using algebraic
geometry with dependencies on the zeta function of the
Kullback-Leibler (KL) distance from the true distribution to
the model distribution and of the prior parameter distribution
(Hironaka 1964; Watanabe 1999, 2001, 2009).

Watanabe’s results apply to a large class of models,
including reduced-rank regression, factor analysis, Binomial
mixtures, and latent class analysis.

For regular models, λ corresponds to an explicit parameter
count (recovering Schwarz’s Bayesian information Criterion).
This is no longer necessarily the case in singular models
where λ in general depends on the underlying data generating
mechanism which is unknown and in general will be less
than Schwarz’s factor "half the number of free parameters".
Specifically, for priors with smooth and positive densities it
holds that λ ď |Ωω|{2 for any data generating distribution.
This implies that,

nλ ď n|Ωω |{2. (18)

Consequently, the asymptotic marginal likelihood is of the
form

logP pv̄ | G,ω0q ´ penaltypGq, (19)

where,

penaltypGq ď |Ωω|{2, (20)

and is therefore milder than that in the usual BIC.



A.4 Path Sampling and Thermodynamic
Integration

Other techniques exist for approximating marginal likeli-
hoods

ş

Ωω
P pv̄ | G,ωqdP pω | Gq.

One that is particularly relevant to our discussion and
underlies the SWBIC is a method inspired by ideas from path
sampling and thermodynamic integration that introduces a
distribution proportional to the likelihood raised to a power
β P r0, 1s times the prior, called the power posterior. The
expected marginal likelihood can then be expressed as an
integral with respect to β from 0 to 1, where the expectation
is taken with respect to the power distribution at power β.
This is useful because of the properties of the value of the
integrand at its end points β “ 0 and β “ 1. We describe the
argument briefly below and refer readers to (Friel and Pettitt
2008) for more details.

Consider the integral of a power distribution defined as,

fpβq “

ż

Ωω

P pv̄ | G,ωqβdP pω | Gq. (21)

β is also called a temperature parameter. For β “ 1 this
expression reduces to the marginal likelihood and for β “ 0
we are simply integrating over the prior which is equal to 1.
The key observation is that by explicitly differentiating with
respect to β it holds that,

d log fpβq

dβ
“

ş

Ωω
logP pv̄ | G,ωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

“ Eβ logP pv̄ | G,ωq, (22)
which can also be written as an expectation of the data log-
likelihood with respect to the power posterior distribution.
By the mean value theorem for differentiable functions, there
must exists some temperature β˚ P r0, 1s such that,

d log fpβ˚q

dβ
“

logpfp1qq ´ logpfp0qq

1 ´ 0

“ log

ż

Ωω

P pv̄ | G,ωqdP pω | Gq, (23)

which is the logarithm of the marginal likelihood of interest.
With knowledge of this optimal temperature β˚ P r0, 1s we
could approximate the log marginal likelihood by sampling
from the power posterior and approximating the expectation
with Monte Carlo samples.

Watanabe’s main result in (Watanabe 2013) is to show that
asymptotically β˚ Ñ 1

logn which defines the SWBIC as the
following approximation to the log marginal likelihood,

SWBICpG, v̄q :“ ´Eβ logP pv̄ | G,ωq, (24)

Eβgpωq :“

ş

Ωω
gpωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

, (25)

where β “ 1
logn . The accuracy of the approximation can be

quantified explicitly and found in (Watanabe 2013, Thm. 4),

SWBICpG, v̄q “ ´ logP pv̄ | Gq ` Opp
a

log nq. (26)

An important observation here is that the prior is explicitly
required for SWBIC whereas it is only used implicitly in the
BIC. The performance of WBIC can thus be sensitive to the
prior (which is not immediately problematic as it is a basic
characteristic of Bayesian model choice which we adhere to
in this paper).

B Proofs
We restate statements for convenience.

Prop. 1 restated. For any causal graph G, let M be an
arbitrary SCM compatible with G. The observational distri-
bution P pV q induced by M could be parameterized as

P pv | ω,Gq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu,

(27)

where θu :“ P pU “ uq defines exogenous probabili-
ties of discrete variables U P U with cardinality dU “
ˇ

ˇΩPapCpUqq

ˇ

ˇ; and each ξ
ppaV ,uV q

V is a deterministic mapping
between finite domains ΩPAV

ˆ ΩUV
ÞÑ ΩV .

Proof. This proposition appears in related formulations
in (Rosset, Gisin, and Wolfe 2018) and (Zhang, Jin, and
Bareinboim 2022). For completeness we adapt the proofs to
our setting in this section.

We first introduce some necessary notations and concepts.
The probability distribution for every exogenous variables
U Ă U is characterized with a probability space. It is fre-
quently designated xΩU ,FU , PU y where ΩU is a sample
space containing all possible outcomes; FU is a σ-algebra
containing subsets of ΩU ; PU is a probability measure on
FU normalized such that PU pΩU q “ 1. Elements of FU

are called events, which are closed under operations of set
complement and unions of countably many sets. By means
of PU a real number PU pAq P r0, 1s is assigned to every
event A P FU ; it is called the probability of event A. For an
arbitrary set of exogenous variables U , its realization U “ u
is an element in the Cartesian product

Ś

UPU ΩU . We may
be interested in inferring whether a sequence of events A
for every U P U occurs. Such an event is represented by a
subset

Ś

UPU AU Ď
Ś

UPU ΩU which in turn generate a
product of σ-algebras

Â

UPU FU . Define the product mea-
sure

Â

UPU PU to satisfy the following mutual independence
condition given by the definition of the SCM,

P

˜

ą

UPU

AU

¸

“
ź

UPU

PU pAU q. (28)

Such P is a probability measure. Moreover,
C

ą

UPUq

ΩU ,
â

UPU

FU ,
â

UPU

PU

G

, (29)

defines a product of probability spaces xΩU ,FU , PU y that
describes measurable events over all exogeneous variables
U partitioned into c-components.



Let C be the collection of all c-components in G. c-
components in C form a partition t

Ť

V PC UV | C P Cu over
exogenous variables U . Therefore, for every U P U , there
must exist a unique c-component denoted by CU containing
U . For any c-component C P C, let UC “

Ť

V PC UV the
set of exogenous variables affecting (at least one of) endoge-
nous variables in C. By the definition of c-components, the
exogeneous variables do not overlap between c-components
and it holds that,

P

˜

č

UPU

AU

¸

“
ź

CPCpGq

PU

˜

č

UPC

AU

¸

.

For any SCM M compatible with the causal graph G the
joint distribution may be factorized into c-components (Tian
and Pearl 2002),

P pvq “
ź

CPC
QrCspc,paCq,

where QrCs is a C-factor and is a function of pc,paCq. We
often omit the input for readability.

To parameterize this joint distribution it is thus sufficient
to look at each C-factor separately. Let C be a generic c-
component in G. Denote by m “ |UC | the number of ex-
ogeneous variables related to C. For convenience, we con-
sistently write xΩi,Fi, Piy as the probability space of i-th
exogeneous variable in C. The product of these probability
spaces is thus written,

C

m
ą

i“1

Ωi,
m
â

i“1

Fi,
m
â

i“1

Pi

G

.

Each C-factor may thus be written,

QrCs “

ż

Śm
i“1 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“1

Pi.

Our goal is to show that all probabilities QrCs, induced
by exogenous variables described by arbitrary probability
spaces could be produced by a “simpler” generative process
with discrete exogenous domains. QrCs defines a mapping
between the space of possible realizations of the variables
PapCq to the r0, 1s interval. Since PapCq are discrete
variables with finite domains, the cardinality of the class of
probability assignments that must be defined is also finite. It
is given at most by the number of possible combinations of
realizations of PapCq which is given by

ś

V PPapCq |ΩV |.

Let P̄ be a vector representing probabilities
QrCspc,paCq. Counting all possible combinations
of outcomes for all possible conditioning sets, P̄ is therefore
a vector of at most size d “

ś

V PPapCq |ΩV |. And since
QrCspc,paCq is a probability mass function, it only takes a
vector with d ´ 1 dimensions to uniquely determine it. P̄
may thus be interpreted as a point in the pd´ 1q-dimensional
real space. Similarly, pP, 1q is vector in d-dimensional space
where the d-th element is equal to 1.

Now consider sampling a value U1 “ u1 from the un-
derlying SCM and let Qu1 be the probability model with
U1 “ u1.

Qu1
rCs

“

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1

,

and P̄u1 is a pd´1q-dimensional probability vector represent-
ing the probabilities of each one of the combinations PapCq

given that U1 “ u1. We will show that P1 may equally
well be represented by a discrete distribution. For this, let
U “ tP̄u1

: u1 P Ω1u Ă Rd be the set of probability
points that can be constructed as u1 varies in Ω1. The aver-
age

ş

Ω1
P̄u1

dP1 is a convex mixture of points in U by (Rubin
and Wesler 1958) that equals Q̄ since,

P̄ “

ż

Ω1

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1

dP1.

By construction, P̄ itself is a convex mixture of at most
d ` 1 points in U . That is, by using Carathéodory’s theorem
(Carathéodory 1911),

P̄ “

d`1
ÿ

k“1

wkP̄u1,k
.

Replacing the definition of P̄u1,k
we obtain P̄ equal to,

d`1
ÿ

k“1

wk

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1,k

.

This means that we can replace the continuous measure P1

with a discrete probability set with outcomes tu1,1, . . . , u1,du

and corresponding probabilities tw1, . . . , wdu with cardinal-
ity d and obtain a probability model that is equivalent to the
original P̄ . This procedure can be repeated for all m exoge-
neous variables in the c-component C. We are thus left with
a model,

QrCs “

ż

Śm
i“1 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“1

Pi,

equivalent to its discrete counterpart,

QrCs “
ÿ

uPuc

ÿ

u“1,...,d

ź

V PC

1tfV ppaV ,uV q “ vu
ź

uPuc

P puq,

where d “
ś

V PPapCq |ΩV |.

This process may now be applied to each C-factor sepa-
rately to obtain a parameterization for the joint distribution
P pvq given by,

P pvq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tfV ppaV ,uV q “ vu
ź

UPU

P puq,

where for every exogenous variable U P U , its cardinality
dU “

ˇ

ˇΩPapCpUqq

ˇ

ˇ; for every endogenous variable V P V ,



function fV is a mapping between finite domains ΩPAV
ˆ

ΩUV
ÞÑ ΩV . Equivalently,

P pv | ω,Gq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu,

to stress the underlying parameterization.

Thm. 1 restated. In discrete SCMs parameterized by
Prop. 1,

´ logP pv̄ | Gq “

´ logP pv̄ | G,ω0q ` λG log n ` Opplog log nq,
(30)

where ω0 is a set of parameters that produces the true distri-
bution, and λG , called the learning coefficient, is a rational
number.

Proof. This result is a consequence on Watanabe’s asymp-
totic expansion of the marginal likelihood (Watanabe 1999,
Thm. 1 ). We prove that its conditions, also stated as (Watan-
abe 2009, Definitions 6.1 and 6.3), apply to singular models
parameterized by Prop. 1. We require that,

1. The distributions in all candidate graphs share a common
support and have densities with respect to a dominating
measure.

2. The parameter space Ωω is compact and defined by real
analytic constraints.

3. The log-likelihood ratios of P pv̄ | ω0,Gq, the true pa-
rameter, with respect to the distributions P pv̄ | ω,Gq can
be bounded by a function that is square integrable under
P pω | Gq and satisfy a requirement of analyticity that
allows for power series expansions in ω.

4. The prior distribution P pω | Gq has a density that is the
product of a smooth positive function and a non-negative
analytic function.

For (1), in systems of latent variables paramterized
by Prop. 1 both the latent and observed variables are
discrete and share a common support which is the set of all
possible values that the variables can take. In this case, local
conditional distributions are discrete probability distribu-
tions and have a density with respect to the counting measure.

For (2), the importance of compactness of the parameter
space comes from the need to define neighbourhoods
around each value in the parameter space allowing for local
analysis. The parameter space pΩω,Ωξq is a subset of a
finite-dimensional Euclidean space which is itself a compact
set, and therefore the parameter space is also compact and,
specifically, it is closed and bounded.

For (3), note that in structural causal models defined by
discretely-valued parameters, the corresponding probability
distribution over all variables can be represented as a discrete
exponential family. As some variables are latent, the joint
probability distribution over observed variables corresponds
to a marginalization which might result in a singular
submodel of an exponential family with a non-invertible
natural parameter function. For this class of systems, (Drton

2009b) showed that the sequence of likelihood ratios
P pv̄ | G1,ω0q{P pv̄ | G2,ω0q “ Opp1q for two causal
graphs G1,G2.

For (4) the prior density P pω | Gq can be chosen by the
investigator. For example, for the prior Dirichlet distribution
used to parameterize distributions of exogenous probabili-
ties, it holds that the probability density function is given
by a product of gamma functions and a power function. The
product of gamma functions is a smooth positive function,
and the power function is a non-negative analytic function
(depending on the value of concentration parameters).

Assumption 1. If G1 is compatible with the data generat-
ing distribution P and G2 is not, then there exists a scalar
c12 ą 0 such that logP pv̄ | G1q ´ logP pv̄ | G2q ą c12n,
with probability tending to 1 as n Ñ 8.

Assumption 2. Let causal graphs G1 and G2 be defined
such that the set of distributions P1 compatible with G1 is
included in the set of distributions P2 compatible with G2.
Then, λG1

ă λG2
with probability tending to 1 as n Ñ 8,

where λG1 , λG2 are the learning coefficients corresponding
to G1,G2 respectively.

Thm. 2 restated. Let P pv̄ | G,ωq be parameterized as in
Prop. 1. Under Assumptions 1 and 2, with probability tending
to 1 as n Ñ 8,
1. (Soundness) If the family of distribution compatible with

G1 includes P pV q but the family of distributions compati-
ble with G2 does not, SWBICpG1, v̄q ă SWBICpG2, v̄q.

2. (Parsimony) If the family of distributions compatible with
G1 is included in that compatible with G2 and both contain
P pV q, SWBICpG1, v̄q ă SWBICpG2, v̄q.

Proof. For the soundness part, let G1 be compatible with
a SCM that is able to generate the data distribution P and
assume G2 is not compatible with any SCM that is able to gen-
erate P . By Prop. 1, the discrete parameterization of SCMs
compatible with G1 and G2 is rich enough to define a set of
distributions that contains any distribution compatible with
G1 and G2. By (Watanabe 2013, Thm. 4), for SWBICpG, v̄q

defined by the proposed discrete parameterization it holds
then that there exists a constant c ą 0 such that,

SWBICpG, v̄q “ ´ logP pG | v̄q ` c
a

log n. (31)
with probability 1 as n Ñ 8.

Then, for constants c1, c2 ą 0,
SWBICpG1, v̄q ´ SWBICpG2, v̄q

“ ´ logP pG | v̄q ` logP pG | v̄q ` pc1 ´ c2q
a

log n

“ ´ log
P pv̄ | G1qP pG1q

P pv̄q
` log

P pv̄ | G2qP pG2q

P pv̄q

` pc1 ´ c2q
a

log n,

“ ´ logP pv̄ | G1q ` logP pv̄ | G2q ´ logP pG1q ` logP pG2q

` pc1 ´ c2q
a

log n

“ ´c3n ` pc1 ´ c2q
a

log n ` c4,



with probability tending to 1 as n Ñ 8. c3 ą 0 is a constant
corresponding to Assumption 1. Therefore, with sufficiently
large values of n, SWBICpG1, v̄q ă SWBICpG2, v̄q.

For the parsimony part, note that in structural causal
models defined by discretely-valued parameters, the
likelihood function can be expressed as a singular sub-
model of an exponential family. Therefore, for any two
graphical models G1 and G2 that induce the data gen-
erating distribution, the sequence of likelihood ratios
P pv̄ | G1,ω0q{P pv̄ | G2,ω0q “ Opp1q (Drton 2009b).

Fix a data generating distribution. Let causal graphs
G1 and G2 be defined such that the set of distributions P1

compatible with G1 is included in the set of distributions P2

compatible with G2. Given Assumption 2, SCMs inducing
more probabilistic constraints are also less complex in this
sense, which yields λG1

ă λG2
.

Following a similar decomposition of the SWBIC together
with Thm. 1,

SWBICpG1, v̄q ´ SWBICpG2, v̄q

“ ´ logP pG | v̄q ` logP pG | v̄q ` pc1 ´ c2q
a

log n

“ ´ logP pv̄ | G1q ` logP pv̄ | G2q ` pc1 ´ c2q
a

log n ` c3

“ ´ logP pv̄ | G1,ω0q ` logP pv̄ | G1,ω0q ` λG1
log n

´ λG2 log n ` pc1 ´ c2q
a

log n ` c3

“ pλG1 ´ λG2q log n ` pc1 ´ c2q
a

log n ` c3 ` c4

asymptotically with probability tending to 1, where
c1, c2, c3, c4 ą 0 are constants. For sufficiently large n, there-
fore, SWBICpG1, v̄q ă SWBICpG2, v̄q.

Prop. 2 restated. Under the assumption of extended faith-
fulness, as n Ñ 8, SWBICpG, v̄q distinguishes between can-
didate causal graphs differing on a (in)equality constraint
between margins of P pV q with probability 1.

Proof. For a contradiction, assume that SWBICpG, v̄q does
not distinguish between two graphs, G1 and G2 that differ on
a (in)equality constraint. By Prop. 1, the family of observa-
tional distributions defined by discrete parameterizations of
SCMs will be different for G1 and G2. Thus also the scores
SWBICpG, v̄q must be different if SWBICpG, v̄q is sound and
parsimonious. This is a contradiction of Thm. 2.

Prop. 3 restated. Let P pV q and G be the joint distribu-
tion and causal graph implied by an SCM parameterized by
curved exponential models. Then, asymptotically,

SWBICpG, v̄q “ SBICpG, v̄q ` Opp1q.

Proof. The proof can be found in (Watanabe 2013, Eq. (32)).

Prop. 4 restated. SWBIC is decomposable.

Proof. We use the concept of C-factors. Following (Tian
and Pearl 2002), for any C Ď V , we define function

QrCspvq “ P pc | dopvzcqq. For convenience, we omit in-
put v and write QrCs. In particular, Qrvs “ P pP pv | G,ωqq

if parameterized by ω, and any QrCs is a function of C and
its parents PapCq. Recall that SWBIC is defined as,

SWBICpG,vq :“ ´

ş

Ωω
logP pv | G,ωqP pv | G,ωqβdP pω | Gq

ş

Ωω
P pv | G,ωqβdP pω | Gq

,

which can be re-written as

SWBICpG,vq :“ ´

ş

Ωω
logpQrvsqQrvsβdP pω | Gq
ş

Ωω
QrvsβdP pω | Gq

,

in terms of C-factors, where the dependence of Q on ω is
implicit. Let Ci denote the set of endogenous variables con-
tained in the i-th c-component, i “ 1, . . . ,m. Following
(Tian and Pearl 2002), the likelihood can then be decom-
posed in terms of C-factors associated to c-components in
the graph,

P pv | ω,Gq “

m
ź

i“1

QrCis. (32)

Notice that the parameter space is similarly partitioned across
C-factors as each exogenous variable is associated to a sin-
gle c-component. Let ωi P Ωi be the parameters that de-
fine the probability of exogenous variables in c-component
Ci and functional assignments of endogenous variables in
c-component Ci. SWBIC may then be written as a sum of
integrals, where the numerator takes the form,

´
ÿ

i

ż

Śm
j“1 Ωj

logQrCis ˆ

m
ź

j“1

QrCjsβd
m
â

j“1

P pωj | Gq.

With the assumption that the prior on ω factors simi-
larly across c-components, all terms that correspond to c-
components other than Ci can be taken out of the integral
with respect to Ωi and cancel with equal integrals of the
denominator of the definition of SWBIC. Thus,

SWBIC “

m
ÿ

i“1

´
ş

Ωi
logpQrCisqQrCis

βdP pωi | Gq
ş

Ωi
QrCis

βdP pωi | Gq
,

which we recognise as SWBICpGPapCiq,vPapCiqq where
GPapCiq and vPapCiq denote the subgraph and data, respec-
tively, with restriction to the variables in PapCiq Ď V .

Prop. 5 restated. SWBIC is score equivalent.

Proof. SWBIC is defined based on model likelihoods and pa-
rameter priors. Under assumptions 1 and 2. If the prior prob-
ability of two graphical models are equal and they encode
exactly the same probabilistic constraints that the likelihoods
are equal up to constant terms and thus also the values of
SWBIC are equal up to constant terms asymptotically.

Prop. 6 restated. Assume that the absolute value of
logP pv̄ | G, ξptq,θptqq, t “ 1, . . . , T be bounded from above
by M ą 0. Then, for δ P p0, 1q we have that with probability
at least 1 ´ δ,
ˇ

ˇ

ˇ
ŜWBICpG, v̄q ´ SWBICpG, v̄q

ˇ

ˇ

ˇ
ď

c

1

2T
M2 logp2{δq. (33)



Proof. The absolute value of logP pv̄ | G, ξptq,θptqq, t “

1, . . . , T is bounded from above by a scalar M ą 0.

Then by (Hoeffding 1994, Thm. 2) for the convergence
of sums of bounded random variables it holds that for any
ϵ ą 0,

P
´
ˇ

ˇ

ˇ
ŜWBICpG, v̄q ´ SWBICpG, v̄q

ˇ

ˇ

ˇ
ě ϵ

¯

ď 2 exp

"

´2ϵ2T

M2

*

.

(34)

Finally, bounding the error rate by δ gives,
ˇ

ˇ

ˇ
ŜWBICpG, v̄q ´ SWBICpG, v̄q

ˇ

ˇ

ˇ
ď

c

1

2T
M2 logp2{δq. (35)

C Experimental and Implementation Details
In this section we give details of the data generating
mechanisms for the synthetic simulations and real data.

The graphs used in Sec. 3 are given in Fig. 5.

Sachs data is downloaded with the discretization procedure
of (Hartemink et al. 2000), with 3 levels, from the bnlearn
data repository. The corresponding graph is given in Fig. 6.

The lung cancer data is downloaded from the bnlearn
data repository. The corresponding graph is given in Fig. 6.

Algorithm 1: Hill climbing greedy search

Input: A dataset v̄, a score function S.
Output: The graph G˚ that maximizes the score.
Initialize: Set G˚ to the empty graph and compute S
on G˚, denoted SpG˚q.
1. While SpG˚q decreases, for every possible edge ad-

dition, deletion or modification that does not prevent
acyclicity.

(a) Let G be the updated graph.
(b) If SpGq ă SpG˚q then set G˚ “ G.

2. Tabu list. Repeat step 1 but choose the graph G with
highest score that has not been considered in the last
steps.

3. Random restart. Repeat step 1 a fixed number of
times by adding or removing multiple random edges
to G˚.

C.1 Implementation Details
All experiments were run on a 3.2 GHz M1 Apple processor
with 8 cores under 16-GB memory limit.

We use a standard Hill climbing greedy search implemen-
tation that is given in Alg. 1. The greedy search starts from an
empty graph and proceeds iteratively. At each stage, SWBIC
evaluates neighbouring graphs by considering every pair of
variables to which one can remove, change, or add a directed
or bi-directed edge, or expand a bi-directed edge denoting
an unobserved confounder to have three or more children,

without violating the acyclicity constraint. In each step of the
search, all the graphs that occur with single changes of the
current graph are considered. One only needs to recompute
the scores of c-components that are affected by the change.
The algorithm terminates whenever no change can be found
that improves the score. Note that greedy search in the space
of arbitrary graphs, even with an oracle scoring method is not
known to converge to a globally optimal graph, and may get
stuck in local optima.

C.2 Example Parameterization and MCMC
In this example, we show how to compute all steps of the
MCMC for a specific graph and joint distribution of data. We
consider the IV graph presented in Fig. 1a.

The parameterization of the joint distribution is given by

P pz, x, yq “
ÿ

uxy,uz

1tξ
px,uxyq

Y “ yu1tξ
pz,uxyq

X “ xu1tξ
puzq

Z “ zuθuxy
θuz

where e.g. ξpx,uxyq

Y represents the causal assignment of Y
given its observed and latent parents and θuxy

represents the
exogenous probability P pUXY “ uxyq. To compute SWBIC
we approximate the power posterior of all relevant parame-
ters, that is ξ,θ,u given v̄, with a metropolis step.

1. Sampling from P pu
pnq
xy , u

pnq
z | v̄, ξ,θq. The complete con-

ditional can be derived following the functional dependen-
cies in the underlying SCM given by the causal graph,

P pupnq
xy ,upnq

z | v̄, ξ,θq

“ P pupnq
xy , upnq

z | vpnq, ξ,θq

9 P pupnq
xy , upnq

z ,vpnq | ξ,θq

“ P pypnq | xpnq, upnq
xy qP pxpnq | zpnq, upnq

xy q

ˆ P pzpnq | upnq
z qP pupnq

z qP pupnq
xy q

“ 1tξ
pxpnq,uxyq

Y “ ypnqu1tξ
pzpnq,upnq

xy q

X “ xpnqu

ˆ 1tξ
pupnq

z q

Z “ zpnquθ
u

pnq
xy

θ
u

pnq
z

,

where we have replaced the probabilities with the corre-
sponding parameters that are used to define them. Let ū
denote n instantiations of latent variables sampled accord-
ing to the probabilities above.

2. Sampling from deterministic causal mechanisms. We con-
sider P pξ

px,uxyq

Y | v̄, ū,θq for illustration as other param-
eters are sampled similarly. For fixed x, uxy, parameter
ξ

px,uxyq

Y is mutually independent of any other parameter
in ξ given v̄, ū,θ and can be sampled separately. Re-
call that by definition of the underlying SCM ξ

px,uxyq

Y
represent a deterministic mapping between inputs x, uxy

and output y P ΩY . The value ξ
px,z,uxyq

Y P ΩY is there-
fore implicitly determined by the current values v̄, ū: if
there exists a tuple pxpnq “ x, u

pnq
xy “ uxy, y

pnq “ yq

for some n “ 1 . . . , N , then by definition ξ
px,uxyq

Y :“ y
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with probability 1. If no such tuple exist, then ξ
px,z,uxyq

Y
is sampled from its domain ΩY with proposal probability
q “ tqy : y P ΩY u that are uniformly updated in a small
neighbourhood of the previous parameter value.

3. Sampling from P pθuxy | v̄, ū,θq. The conditional dis-
tribution over θuxy given v̄, ū is given by a Dirich-
let distribution θU | v̄, ū „ Dir pβ1, . . . , βdU

q where
βj :“ αj ` cj where cj is updated in each iteration of
the sampler using a uniform proposal distribution, e.g.
cj „ Uniformpcj ´ ϵ, cj ` ϵq and ϵ ą 0 a small scalar.

This process eventually forms a chain of samples from
the correct posterior distribution of each parameter. At this
stage, we record the current t ` 1-th sample pξpt`1q,θpt`1qq

with an acceptance ratio given by P pξpt`1q,θpt`1q |

v̄,Gqβ{P pξptq,θptq | v̄,Gqβ where,

P pξ,θ | v̄,Gqβ exp t´β logP pv̄ | ξ,θ,Gq ` logP pξ,θ|Gqu ,

where P pv̄ | ξ,θ,Gq evaluates to,

n
ź

i“1

ÿ

uxy,uz

1tξ
pxpiq,uxyq

Y “ ypiqu1tξ
pzpiq,uxyq

X “ xpiqu

ˆ 1tξ
puz

Z “ zpiquθuxyθuz .

And finally, we approximate SWBIC with MCMC samples,

ŜWBICpG, v̄q :“ ´
1

T

T
ÿ

t“1

logP pv̄ | G, ξptq,θptqq.

D Additional Experiments
This section provides additional experiments to illustrate
score consistency in the presence of equality constraints,
score decomposability, an an illustration of the expressiveness
of discrete SCMs, and an empirical run time analysis of the
proposed score.

D.1 Scores on Variations of the Verma Graph
We consider variations of the Verma graph (Fig. 1c) given
in Fig. 7. The task is to score these variations, and compare
them to scores of the ground truth IV graph, based data
generated from different random SCMs M “ xV ,U ,F , P y

compatible with ground truth graph.
Comparisons between Verma graphs and its variations

emphasize the trends observed in the main body of this paper.
For instance, we highlight Fig. 8a that considers an equivalent
graph that adds a bi-directed edge W L9999K X to the Verma
graph in Fig. 1c, and results in a model with more edges
and parameters which has worse SBIC1 ,SBIC2 scores even
though defining the same model for P pV q. Figs. 8b and 8c
both consider unconstrained variations of the Verma graph
with more edges (but Fig. 8c fewer parameters) and Fig. 8d
considers an equivalent graph with the same number of edges
but more parameters which results in the expected scoring
pattern observed in Figs. 8b to 8d. We conclude with the
observation that empirically, across variations of different
graphs and sample sizes, SWBIC correctly scores graphs based
on (in)equality constraints and appreciates equivalence in the
space of distributions P pV q induced by graphs even if those
have differing number of edges or parameters.

D.2 Illustration of Score Consistency and
Equivalence

We consider in this subsection additional experiments to
illustrate the consistency of our score in systems that differ
on an (in)equality constraint but also more exotic constraints
that have been studied in the literature.

Our results are summarized in Table 1, itself sub-divided
into 3 sections. Each section involves data sampled from a
different SCM shown in the row labeled "✓" that is to be
compared in terms of SWBIC and SBIC with alternative (er-
roneous "ˆ") causal graphs. In particular, the Verma graph
in the first row specifies an equality constraint over P pvq

that is violated in the second graph. The graph in the third
row is unconstrained, i.e. compatible with any probability
distribution P px, y, zq. We generate data in a manner that
P px “ y “ zq “ P puq „ Bernoullip0.5q chosen because
it cannot be generated by the triple bi-directed graph in the
fourth row, see e.g. (Wolfe, Spekkens, and Fritz 2019), while
both models specify exactly the same constraints otherwise.
The last section of Table 1 considers data from the IV graph
that encodes an inequality constraint in P px, y, zq. The last
two graphs are compatible with any distribution P px, y, zq

which we include here to demonstrate that SWBIC gives the
same score to equivalent graphs. We observe that in all ex-
amples, SWBIC gives a lower score to the correct graph, illus-
trating empirically that the proposed score is able to leverage
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Figure 8: Quality of scores. The horizontal gray line indicates the theoretical optimum.

(in)equality as well as more general constraints to correctly
infer the correct graph. This is not the case for SBIC1

, es-
pecially in comparisons to the IV example where the free
parameter count does not reflect the asymptotic complexity
P pv | Gq.

Graph SWBIC SBIC1 True Graph?

2770.8 2707.7 ✓

2778.7 2709.0 ˆ

697.7 709.9 ✓

1293.2 1453.3 ˆ

1557.7 1570.8 ✓

1559.8 1578.4 ˆ

1559.7 1564.2 ˆ

Table 1: SWBIC on graphs imposing different constraints on data.
Lower values indicate a better fit.

D.3 Illustration of Score Decomposability and
Equivalence

We consider in this subsection additional experiments to
illustrate the decomposability features of the score

Table 2 exemplifies these facts by showing that scores
of separate c-components can be added to generate a total
score, that equivalent graphs have equivalent scores, and that
incorrectly adding or removing statistical independencies
worsens the score due to the worse fit of the resulting graph
to the data generating distribution.

Graph SWBIC Interpretation

3426.1 Data generating graph G
1388.1 c-component of G
2038.3 c-component of G
3426.4 Equivalent graph to G
3431.0 G with incorrect dependence

4167.9 G with incorrect independence

Table 2: Examples of decomposition, equivalence, and consistency.

D.4 Collider Graph to Illustrate Upperbound on
Cardinality of Exogenous Variables

We use the graph illustrated in Table 3 to show that the
upperbound on the dimensionality of exogenous variables
in an observational equivalent discrete SCM correctly
encodes the required complexity to generate the class of
observational distributions implied by the underlying SCM
(with continuously-valued exogeneous variables). Data
is generated according to the graph with the following
parameterization: x Ð 1tux ą 0u, y Ð 1tx ą 0.5,´0.5 ă

uyz ă 1u, z Ð 1tuyz ą 0u.

Observe that for parameterizations of the likelihood given
by the upper-bound in Prop. 1, i.e. |ΩUyz

| “ |ΩX | ¨ |ΩY | ¨

|ΩZ | “ 8, SWBIC reports a score of 2003 which is the same
as that given for any model with a larger dimensionality of
exogeneous variables but that the score worsens for models
with a dimensionality |ΩUyz

| “ 4 for example, with score
2033. Prop. 1 only specifies an upper-bound to the dimen-
sionality of exogeneous variables such that we are able to
reproduce any observational distribution given by the contin-
uous SCM but these may be over-parameterized as can be
seen by computing SWBIC for a model with |ΩUyz

| “ 6 that,
it turns out, is expressive enough to encode the observed data
distribution. The score SWBIC penalizes based on the effective
dimensionality of the parameter space and is thus insensitive
to increasing the dimensionality of exogenous variables if
this does not change the family of distributions that such a
parameterization induces.



Figure 9: Run time experiments.

Graph |ΩUY Z | SWBIC

8 2003.2

10 2003.4

6 2003.2

4 2033.4

Table 3: Varying the dimensionality of uY Z .

D.5 Run time performance
This section describes the run time complexity (run here
for illustration on a standard 3.2 GHz M1 Apple proces-
sor with 8 cores under 16-GB memory limit) of scoring
causal graphs with SWBIC,SBIC1

and SBIC2
as a function of

the number of parameters that define the underlying model
and as a function of the number of samples. Fig. 9 (LHS)
gives the time in seconds on this machine needed to score
a graph G “ tX Ñ Y,X Ø Y u in which we set the car-
dinality of X and Y to 4, 5, 7, 9 which results in a total of
96, 175, 441, 891 parameters. We use a sample size of 1000
and 5000 iterations of the MCMC sampler. Fig. 9 (RHS)
gives the time in seconds on this machine needed to score
a graph G “ tX Ñ Y,X L9999K Y u with X and Y of
cardinality 3 with increasing sample size and 5000 iterations
of the MCMC sampler. Due to the decomposable nature of
the proposed score all relevant c-components may be scored
in parallel.


