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Abstract

This paper investigates the problem of bounding
counterfactual queries from an arbitrary collec-
tion of observational and experimental distribu-
tions and qualitative knowledge about the under-
lying data-generating model represented in the
form of a causal diagram. We show that all coun-
terfactual distributions in an arbitrary structural
causal model (SCM) with discrete observed do-
mains could be generated by a canonical family
of SCMs with the same causal diagram where
unobserved (exogenous) variables are also dis-
crete, taking values in finite domains. Utilizing
the canonical SCMs, we translate the problem
of bounding counterfactuals into that of polyno-
mial programming whose solution provides opti-
mal bounds for the counterfactual query. Solving
such polynomial programs is in general compu-
tationally expensive. We then develop effective
Monte Carlo algorithms to approximate optimal
bounds from a combination of observational and
experimental data. Our algorithms are validated
extensively on synthetic and real-world datasets.

1. Introduction
This paper studies the problem of inferring counterfactual
queries from a combination of observations, experiments,
and qualitative assumptions about the phenomenon under in-
vestigation. The assumptions are represented in the form of
a causal diagram (Pearl, 1995), which is a directed acyclic
graph where arrows indicate the potential existence of func-
tional relationships among variables; some variables are
unobserved. This problem arises in diverse fields such as ar-
tificial intelligence, statistics, cognitive science, economics,
and the health and social sciences. For example, when inves-
tigating the gender discrimination in college admission, one
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may ask “what would the admission outcome be for a fe-
male applicant had she been a male?” Such a counterfactual
query contains conflicting information: in the real world,
the applicant is female; in the hypothetical world, she is not.
Formally, counterfactual lies on top of a hierarchy of increas-
ingly expressive languages that also include observations
and interventions, which is called Pearl Causal Hierarchy
(Pearl & Mackenzie, 2018; Bareinboim et al., 2020). In
general, counterfactuals are not immediately computable
from observational and experimental distributions.

The problem of identifying counterfactual distributions from
the combination of data and a causal diagram has been stud-
ied in the causal inference literature. First, there exists
a sound and complete proof system for reasoning about
counterfactual queries (Halpern, 1998). While such a sys-
tem, in principle, is sufficient in evaluating any identifiable
counterfactual expression, it lacks a proof guideline that
efficiently determines the feasibility of such evaluation. Fur-
ther, Shpitser & Pearl (2007) studied an algorithm for the
identification of counterfactuals from all possible controlled
experiments. There exist also algorithms for identifying
path-specific effects from experimental data (Avin et al.,
2005) and observational data (Shpitser & Sherman, 2018).
More recently, Correa et al. (2021) developed the first sound,
complete, and efficient algorithm that decides whether any
nested counterfactual distribution is identifiable from an
arbitrary combination of observations and experiments.

In practice, the combination of qualitative assumptions and
data does not always permit one to uniquely determine the
target counterfactual query. In such cases, the counterfactual
query is said to be non-identifiable. Partial identification
methods concern with inferring about the target counterfac-
tual probability in non-identifiable settings. Several algo-
rithms have been developed to derive informative bounds
over counterfactual probabilities from the combination of
observational and experimental data (Manski, 1990; Robins,
1989; Balke & Pearl, 1994; 1997; Tian & Pearl, 2000; Evans,
2012; Richardson et al., 2014; Zhang & Bareinboim, 2017;
Kallus & Zhou, 2018; Finkelstein & Shpitser, 2020; Kilber-
tus et al., 2020; Zhang & Bareinboim, 2021).

In this work, we build on the approach introduced by (Balke
& Pearl, 1994), which involves direct discretization of un-
observed domains, also referred to as the canonical parti-
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tioning or the principal stratification (Frangakis & Rubin,
2002; Pearl, 2011). Consider the causal diagram in Fig. 1a,
where X,Y, Z are binary variables in {0, 1}; U2 is an un-
observed variable taking values in an arbitrary continuous
domain. Balke & Pearl (1994) showed that domains of
U2 could be discretized into 16 equivalent classes with-
out changing the original counterfactual distributions and
the graphical structure in Fig. 1a. For instance, suppose
that values of U2 are drawn from an arbitrary distribution
P ∗(U2) over a continuous domain. It has been shown
that the observational distribution P (x, y, z) could be re-
produced by a generative model of the form P (x, y, z) =∑

u P (x|u2, z)P (y|x, u2)P (u2)P (z), where P (U2) is a
discrete distribution over a finite domain {1, . . . , 16}.

Using the finite-state representation of unobserved variables,
Balke & Pearl (1997) derived tight bounds on treatment ef-
fects under a set of constraints called instrumental variables
(e.g., Fig. 1a). Chickering & Pearl (1997); Imbens & Ru-
bin (1997); Richardson et al. (2011) applied the parsimony
of finite-state representation in a Bayesian framework, to
obtain credible intervals for the posterior distribution of
causal effects in noncompliance settings. Despite the op-
timality guarantees in their treatments, these bounds were
only derived for specific settings, but could not be imme-
diately extended to other causal diagrams without loss of
generality. A systematic strategy for partial identification
in an arbitrary causal diagram is still missing. There are
significant challenges in bounding any counterfactual query
in an arbitrary causal diagram given an arbitrary collection
of observational and experimental data.

The goal of this paper is to overcome these challenges. We
show that when inferring about counterfactual distributions
(over finite observed variables) in an arbitrary causal dia-
gram, one could restrict domains of unobserved variables to
a finite space without loss of generality. This result allows us
to develop novel partial identification algorithms to bound
unknown counterfactual probabilities from an arbitrary com-
bination of observational and experimental data. In some
ways, this paper can be seen as closing a long-standing open
problem introduced by (Balke & Pearl, 1994), where they
solve a special bounding instance from the observational
distribution in the case of the instrumental variable graph.

More specifically, our contributions are summarized as fol-
lows. (1) We introduce a special family of canonical struc-
tural causal models, and show that it could represent all cat-
egorical counterfactual distributions in any arbitrary causal
diagram. (2) Building on this result, we translate the partial
identification task into an equivalent polynomial program.
Solving such a program leads to optimal bounds over target
counterfactual probabilities. (3) We develop an effective
Monte Carlo Markov Chain algorithm to approximate op-
timal bounds from a finite number of observational and
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Figure 1: Causal diagrams containing treatment X , outcome
Y , ancestor Z, mediator W , and unobserved variables Ui.

experimental data. Finally, our algorithms are validated
on synthetic and real-world datasets. Given the space con-
straints, all proofs are provided in Appendices A and B.

1.1. Preliminaries

We introduce in this section some basic notations and def-
initions that will be used throughout the paper. We use
capital letters to denote variables (X), small letters for their
values (x) and ΩX for their domains. For an arbitrary set
X , let |X| be its cardinality. The probability distribution
over variables X is denoted by P (X). For convenience,
we consistently use P (x) as a shorthand for the probability
P (X = x). Finally, the indicator function 1X=x returns 1
if an event X = x holds; otherwise, 1X=x is equal to 0.

The basic semantical framework of our analysis rests on
structural causal models (SCMs) (Pearl, 2000; Bareinboim
& Pearl, 2016). An SCM M is a tuple ⟨V ,U ,F , P ⟩ where
V is a set of endogenous variables and U is a set of exoge-
nous variables. F is a set of functions where each fV ∈ F
decides values of an endogenous variable V ∈ V taking
as argument a combination of other variables in the system.
That is, v ← fV (paV , uV ),PAV ⊆ V , UV ⊆ U . Exoge-
nous variables U ∈ U are mutually independent, values
of which are drawn from the exogenous distribution P (U).
Naturally, M induces a joint distribution P (V ) over en-
dogenous variables V , called the observational distribution.
Each SCM M is also associated with a causal diagram G
(e.g., Fig. 1), which is a directed acyclic graph (DAG) where
solid nodes represent endogenous variables V , empty nodes
represent exogenous variables U , and arrows represent the
arguments PAV , UV of each structural function fV .

An intervention on an arbitrary subset X ⊆ V , denoted by
do(x), is an operation where values of X are set to con-
stants x, regardless of how they are ordinarily determined.
For an SCM M , let Mx denote a submodel of M induced
by intervention do(x). For any subset Y ⊆ V , the poten-
tial response Yx(u) is defined as the solution of Y in the
submodel Mx given U = u. Drawing values of exogenous
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variables U following the distribution P (U) induces a coun-
terfactual variable Yx. Specifically, the event Yx = y (for
short, yx) can be read as “Y would be y had X been x”.
For subsets Y , . . . ,Z, X, . . . ,W ⊆ V , the distribution
over counterfactuals Yx, . . . ,Zw is defined as:

P (yx, . . . ,zw) =

∫
ΩU

1Yx(u)=y,...,Zw(u)=zdP (u). (1)

Distributions of the form P (Yx) are called interventional
distributions; when X = ∅, P (Y ) coincides with the obser-
vational distribution. For a more detailed survey on SCMs,
we refer readers to (Pearl, 2000; Bareinboim et al., 2020).

2. Partial Counterfactual Identification
We introduce the task of partial identification of a coun-
terfactual probability from a combination of observational
and interventional distributions, which generalizes the pre-
vious partial identifiability settings that assume observa-
tional data are given (Balke & Pearl, 1997; Imbens & Rubin,
1997). 1 Throughout this paper, we assume that domains of
endogenous variables V are discrete and finite; while ex-
ogenous variables U could take values in any (continuous)
domains. P (Yx, . . . ,Zw) defined above is thus a categori-
cal distribution. Let Z = {zi}mi=1 be a finite collection of
realizations zi for sets of variables Zi ⊆ V . The learner
has access to data collected from all of the interventional
distributions in {P (Vz) | z ∈ Z}. Note that Z = ∅ corre-
sponds to the observational distribution P (V ). Our goal is
to find a bound [l, r] for an arbitrary counterfactual proba-
bility P (yx, . . . ,zw) from the collection of interventional
distributions {P (Vz) | z ∈ Z} and the causal diagram G.
Definition 2.1 (Optimal Counterfactual Bound). For a
causal diagram G and distributions {P (Vz) | z ∈ Z}, the
optimal bound [l, r] over a counterfactual probability
P (yx, . . . ,zw) is defined as, respectively, the minimum
and maximum of the following optimization problem:

min /max
M∈M (G)

PM (yx, . . . ,zw)

s.t. PM (Vz) = P (Vz) ∀z ∈ Z
(2)

where M (G) is the set of all SCMs associated with the
diagram G, i.e., M (G) = {∀M | GM = G}2.

Among quantities in Eq. (2), PM (Yx, . . . ,Zw) and
PM (Vz) are given in the form of Eq. (1). By its formu-
lation, [l, r] must be the tight bound containing all possible
values of the target counterfactual P (yx, . . . ,zw).

1When a combination of observational and experimental data
is available, there exist necessary and sufficient conditions and
algorithms for deciding point identification (Bareinboim & Pearl,
2012; Lee et al., 2019; Correa et al., 2021).

2We will use subscript M to represent the restriction to an
SCM M . Therefore, GM represents the causal diagram associated
with M ; so does counterfactual distributions PM (Yx, . . . ,Zw).

Since we do not have access to the parametric forms of the
underlying structural functions fV nor the exogenous dis-
tribution P (u), solving the optimization problem in Eq. (2)
is technically challenging. It is not clear how the existing
optimization procedures can be used. Next we show the
optimization problem in Eq. (2) can be reduced into a poly-
nomial program by constructing a “canonical” SCM that is
equivalent to the original SCM in representing the objective
P (yx, . . . ,zw) and all constraints P (Vz),∀z ∈ Z.

2.1. Canonical Structural Causal Models

Our construction relies on a special type of clustering of
endogenous variables in the causal diagram, which is called
confounded components (Tian & Pearl, 2002). For con-
venience, let a bi-directed arrow Vi ↔ Vj between en-
dogenous nodes Vi, Vj ∈ V be defined as a sequence
Vi ← Uk → Vk where Uk ∈ U is an exogenous parent
shared by Vi, Vj . A bi-directed path is a consecutive se-
quence of bi-directed arrows. Formally,

Definition 2.2. For a causal diagram G, a subset C ⊆ V is
said to be a c-component if any pair Vi, Vj ∈ C is connected
by a bi-directed path in G.

A c-component C is maximal if there does not exist any
other c-component in the causal diagram G containing C.
For an arbitrary exogenous variable U ∈ U , we denote
by C(U) the maximal c-component covering U in G, i.e.,
U ∈

⋃
V ∈C(U) UV . For instance, Fig. 1a contains two c-

components C(U1) = {Z} and C(U2) = {X,Y }. On
the other hand, exogenous variables U1, U2 in Fig. 1b are
covered by the same c-component C(U1) = C(U2) =
{X,Y, Z} since they share a common child node Y .

We are now ready to introduce a parametric family of canon-
ical SCMs where values of each exogenous variable are
drawn from a discrete distribution over a finite set of states.

Definition 2.3. An SCM M = ⟨V ,U ,F , P ⟩ is said to be
a canonical SCM if

1. For every endogenous V ∈ V , its values v are given by
a function v ← fV (paV , uV ) where for any paV , uV ,
fV (paV , uV ) is contained in a finite domain ΩV .

2. For every exogenous U ∈ U , its values u are drawn
from a finite domain ΩU ; its cardinality is bounded by3

|ΩU | =
∏

V ∈C(U)

|ΩPAV
7→ ΩV | . (3)

That is, the total number of functions mapping from
domains of input PAV to V for every endogenous V
in the c-component C(U) covering U .

3For every V ∈ V , we denote by ΩPAV 7→ ΩV the set of all
possible functions mapping from domains ΩPAV to ΩV .
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One may surmise that finite exogenous domains in canonical
SCMs are not sufficient in capturing all the uncertainties and
randomness introduced by other continuous variables. Per-
haps surprisingly, we will show that the SCMs class defined
above is indeed “canonical”. That is, it could represent all
counterfactual distributions in any SCM while maintaining
the same structure of its associated causal diagram.

Theorem 2.4. For an arbitrary SCM M = ⟨V ,U ,F , P ⟩,
there exists a canonical SCM N such that

1. M and N are associated with the same causal diagram,
i.e., GM = GN .

2. For any set of counterfactual variables Yx, . . . ,Zw,
PM (Yx, . . . ,Zw) = PN (Yx, . . . ,Zw).

Thm. 2.4 establishes the expressive power of canonical
SCMs in representing counterfactual distributions in a
causal diagram G. As an example, consider the ”Non-IV”
diagram G in Fig. 1b where X,Y, Z are binary variables
in {0, 1}. Since U1, U2 are over by the same c-component
{X,Y, Z}, Eq. (3) implies that they must share the same
cardinality d = |ΩZ | × |ΩZ 7→ ΩX | × |ΩX 7→ ΩY | = 32
in canonical SCMs compatible with G. It follows from
Thm. 2.4 that the counterfactual distribution P (Xz′ , Yx′)
in the causal diagram G could be generated by a canonical
SCM associated with G and be written as follows:

P (xz′ , yx′)

=

d∑
u1,u2=1

1fX(z′,u2)=x1fY (x′,u1,u2)=yP (u1)P (u2).
(4)

More generally, Thm. 2.4 implies that counterfactual dis-
tributions P (Yx, . . . ,Zw) in any SCM could always be
decomposed over a finite number of exogenous states. In
other words, when inferring about counterfactual probabili-
ties in an arbitrary causal diagram with discrete endogenous
domains, one could assume exogenous distributions to be
discrete and finite without loss of generality. Formally,

Proposition 2.5. For any SCM M = ⟨V ,U ,F , P (U)⟩,
let Yx, . . . ,Zw be an arbitrary set of counterfactual vari-
ables. The distribution P (Yx, . . . ,Zw) decomposes as

P (yx, . . . ,zw)

=
∑
U∈U

dU∑
u=1

1Yx(u)=y,...,Zw(u)=z

∏
U∈U

P (u),
(5)

where for every exogenous U ∈ U , P (U) is a discrete dis-
tribution over a finite domain {1, . . . , dU} with cardinality
dU =

∏
V ∈C(U) |ΩPaV

7→ ΩV |. Counterfactual variables
Yx(u) = {Yx(u) | ∀Y ∈ Y } are recursively defined as:

Yx(u) =

{
xY if Y ∈X

fY ((PAY )x (u), uY ) otherwise
(6)

where xY is the value assigned to Y in x; and (PAY )x (u)
is a set of potential responses {Vx(u) | ∀V ∈ PAY }.

Related work The discretization procedure in (Balke &
Pearl, 1994) was originally designed for the “IV” diagram
in Fig. 1a, and was extended to causal diagrams satisfying
generalized IV constraints (Sachs et al., 2020). However,
this procedure is not applicable to a general causal diagram
with arbitrary structure without loss of generality; see Ap-
pendix E for a detailed example. More recently, Evans
et al. (2018) showed that for a specific class of causal di-
agrams satisfying a running intersection property among
exogenous variables, all equality and inequality constraints
over the observational distribution could be generated using
discrete unobserved domains. Rosset et al. (2018) applied
the classic result of Carathéodory theorem in convex geom-
etry (Carathéodory, 1911) and developed a generic model
with finite-state unobserved variables that could represent
the observational distribution over discrete domains in an
arbitrary causal diagram.

Thm. 2.4 generalizes existing results in several important
ways. First, the theorem is applicable to any causal diagram,
thus not relying on additional graphical conditions, e.g., IV
constraints (Balke & Pearl, 1994). Second, we prove that
all counterfactual distributions could be generated using
discrete exogenous variables with finite domains, which
subsume both observational and interventional distributions.
Indeed, it is possible to show from Thm. 2.4 that there exists
a specific subset of canonical SCMs capable of representing
observational distributions in an arbitrary causal diagram.

Proposition 2.6. For any SCM M = ⟨V ,U ,F , P (U)⟩,
P (V ) decomposes as follows:

P (v) =
∑
U∈U

dU∑
u=1

1V (u)=v

∏
U∈U

P (u), (7)

where for every U ∈ U , dU =
∏

V ∈Pa(C(U)) |ΩV |.

The above result coincides with the parametrization intro-
duced in (Rosset et al., 2018). Similarly, we also describe a
more refined canonical representation for all interventional
distributions in a SCM with arbitrary causal relationships.

Proposition 2.7. For any SCM M = ⟨V ,U ,F , P (U)⟩,
for any subset X,Y ⊆ V , P (Yx) decomposes as follows:

P (yx) =
∑
U∈U

dU∑
u=1

1Yx(u)=y

∏
U∈U

P (u), (8)

where for every U ∈ U , dU =
∏

V ∈C(U) |ΩPAV
× ΩV |.

One attractice property of the specific characterization pro-
vided in Props. 2.6 and 2.7, when compared to the most
general result given by Prop. 2.5 is that the cardinalities
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of the exogenous variables, dU , are smaller than that in a
general canonical SCM (Eq. (3)). This is due to the fact that
observational and interventional distributions are strictly
contained in the collection of all counterfactual distributions
in a causal diagram. The model complexity of canonical
SCMs could thus be reduced and will have implication to
the tasks downstream. More generally, the discretization
procedure in Thm. 2.4 relies on a generalized canonical par-
titioning over exogenous domains in an arbitrary SCM. Any
counterfactual distribution in this SCM could be written as
a function of joint probabilities assigned to intersections of
generalized canonical partitions. This allows us to discretize
exogenous domains while maintaining all counterfactual dis-
tributions and structures of the causal diagram. We refer
readers to Appendix A for details about Thm. 2.4’s proof.

2.2. Bounding Counterfactual Distributions

The expressive power of canonical SCMs in Thm. 2.4 sug-
gests a natural algorithm for the partial identification of
counterfactual distributions. For a causal diagram G, let
N (G) denote the set of all canonical SCM compatible with
G whose exogenous domain ΩU for every U ∈ U is dis-
crete, bounded by Eq. (3). We derive a bound [l, r] over a
counterfactual probability P (yx, . . . ,zw) from an arbitrary
collection of interventional distributions {P (Vz) | z ∈ Z}
by solving the following optimization problem:

min /max
N∈N (G)

PN (yx, . . . ,zw)

s.t. PN (Vz) = P (Vz) ∀z ∈ Z
(9)

where the counterfactual probability PN (yx, . . . ,zw) and
interventional distributions PN (Vz) are given in the form
of Eq. (5). More generally, the optimization problem in
Eq. (9) is reducible to an equivalent polynomial program.
To witness, for every exogenous variable U ∈ U , let pa-
rameters θu represent discrete probabilities P (U = u).
For every endogenous variable V ∈ V , we represent
the output of structural function fV (paV , uV ) given in-
put PAV = paV and UV = uV using an indicator vector
µ
(paV ,uV )
V =

(
µ
(paV ,uV )
v | ∀v ∈ ΩV

)
such that

µ(paV ,uV )
v ∈ {0, 1},

∑
v∈ΩV

µ(paV ,uV )
v = 1.

Doing so allows us to write any counterfactual probability
P (yx, . . . ,zw) in Eq. (5) as a polynomial function of pa-
rameters µ(paV ,uV )

v and θu. More specifically, the indicator
function 1Yx(u)=y is equal to a product

∏
Y ∈Y 1Yx(u)=y.

For every Y ∈ Y , 1Yx(u)=y is recursively given by:

1Yx(u)=y =


1y=xY

if Y ∈X∑
paY

µ(paY ,uY )
y 1(PAY )x(u)=paY

otherwise

For instance, consider again the causal diagram G in Fig. 1b.
The counterfactual distribution P (Xz′ , Yx′) and the obser-
vational distribution P (X,Y, Z) of any discrete SCM in
N (G) and be written as following polynomial functions:

P (xz′ , yx′) =

d∑
u1,u2=1

µ(z′,u2)
x µ

(x′,u1,u2)
Y θu1

θu2
, (10)

P (x, y, z) =

d∑
u1,u2=1

µ(u1)
z µ(z,u2)

x µ(x,u1,u2)
y θu1

θu2
, (11)

where µ
(u1)
z , µ

(z′,u2)
x , µ

(x′,u1,u2)
y are parameters taking val-

ues in {0, 1}; θui , i = 1, 2, are probabilities of the discrete
distribution P (ui) over the finite domain {1, . . . , d}. One
could derive a bound over P (xz′ , yx′) from P (X,Y, Z) by
solving polynomial programs which optimize the objective
Eq. (10) over parameters θu1 , θu2 , µ

(u1)
z , µ

(z,u2)
x , µ

(x,u1,u2)
y ,

subject to the constraints in Eq. (11) for all entries x, y, z.
Appendix D includes additional examples demonstrating the
reduction of partial counterfactual identification to equiva-
lent polynomial programs.

Note that the collection of all counterfactual distributions
subsume both observational and interventional ones. It
follows immediately from Thm. 2.4 that the solution [l, r]
of the optimization program in Eq. (9) is guaranteed to be a
valid, tight bound containing the target counterfactual.

Theorem 2.8. Given a causal diagram G and interven-
tional distributions {P (Vz) | z ∈ Z}, the solution [l, r] of
the polynomial program Eq. (9) is a tight bound over the
counterfactual probability P (yx, . . . ,zw).

The optimization problem in Eq. (2) is generally reducible
to an equivalent polynomial program. Investigating effec-
tive polynomial optimization methods is an ongoing subject
of research (Lasserre, 2001; Parrilo, 2003). Our focus is on
the causal inference aspect of the problem, and like earlier
works (Balke & Pearl, 1994; 1997), we do not commit to
any particular solvers. For instance, in a quasi-Markovian
diagram where every endogenous node is affected by at
most one exogenous variable, (Zaffalon et al., 2020) showed
causal bounds are obtainable by applying variable elimi-
nation in credal networks. This corresponds to a mapping
between the bounding problem to multilinear programming
(De Campos et al., 1994). In some very specific cases,
the bounds are obtainable by solving linear programs (e.g.,
bounding P (yx) in the “IV” diagram of Fig. 1a). However,
it has been shown in (Zaffalon et al., 2021) that the par-
tial counterfactual identification is generally NP-hard and
takes exponentially long in some specific diagrams (e.g., a
polytree); let alone the most general case. Therefore, this
calls for the need of effective algorithms that approximate
optimal bounds over unknown counterfactual probabilities.
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Figure 2: The data-generating process for a finite dateset {x(n), y(n), z(n)}Nn=1 in an SCM associated with in Fig. 1b; the set
Z = {∅, z = 0, z = 1} where the idle intervention do(∅) corresponds to the observational distribution.

3. Bayesian Approach for Partial Identification
This section describes an algorithm to effectively ap-
proximate the optimal counterfactual bound in Eq. (9)
from finite samples drawn from interventional distributions
{P (Vz) | z ∈ Z}, provided with prior distributions over
parameters θu and µ

(paV ,uV )
V , possibly uninformative.

More specifically, the learner has access to a finite dataset
v̄ =

{
V (n) = v(n) | n = 1, . . . , N

}
, where each V (n) is

an independent sample drawn from an interventional dis-
tribution P (Vz) for some z ∈ Z. With a slight abuse of
notation, we denote by Z(n) the set of variables Z that
are intervened for generating the n-th sample; therefore,
its realization z(n) = z. As an example, Fig. 2 shows a
graphical representation of the data-generating process for
a finite dateset {x(n), y(n), z(n)}Nn=1 associated with SCMs
in Fig. 1b; the intervention set Z = {∅, z = 0, z = 1}.

We first introduce effective Markov Chain Monte Carlo
(MCMC) algorithms that sample the posterior distribu-
tion P (θctf | v̄) over an arbitrary counterfactual probability
θctf = P (yx, . . . ,zw). For every V ∈ V , ∀paV , uV , en-
dogenous parameters µ(paV ,uV )

V are drawn uniformly over
the finite domain ΩV . For every U ∈ U , exogenous param-
eters θu are drawn from a Dirichlet distribution, i.e.,

(θ1, . . . , θdU
) ∼ Dir

(
α
(1)
U , . . . , α

(dU )
U

)
, (12)

where the cardinality dU =
∏

V ∈C(U) |ΩPAV
7→ ΩV | and

hyperparameters α(u)
1 , . . . , α

(dU )
U > 0.

Gibbs sampling is a well-known MCMC algorithm that
allows one to sample posterior distributions. We first intro-
duce the following notations. Let parameters θ and µ be:

θ = {θu | ∀U ∈ U ,∀u} ,

µ =
{
µ
(paV ,uV )
V | ∀V ∈ V ,∀paV , uV

}
.

(13)

We denote by Ū =
{
U (n) | n = 1, . . . , N

}
exoge-

nous variables affecting N endogenous variables V̄ ={
V (n) | n = 1, . . . , N

}
; we use ū to represent its realiza-

tion. Our blocked Gibbs sampler works by iteratively draw-
ing values from the conditional distributions of variables as
follows (Ishwaran & James, 2001). Detailed derivations of
complete conditionals are shown in Appendix B.1.

• Sampling P (ū | v̄,θ,µ). Exogenous variables U (n),
n = 1, . . . , N , are mutually independent given parame-
ters θ,µ. We could draw each

(
U (n) | θ,µ, V̄

)
corre-

sponding to the n-th sample induced by do(z(n)) inde-
pendently. The complete conditional of U (n) is given by

P
(
u(n) | v(n),θ,µ

)
∝

∏
V ∈V \Z(n)

µ

(
pa

(n)
V ,u

(n)
V

)
v(n)

∏
U∈U

θu.
(14)

• Sampling P (µ,θ | v̄, ū). Note that parameters µ,θ are
mutually independent given V̄ , Ū . Therefore, we will
derive complete conditionals over µ,θ separately.

Consider first endogenous parameters µ. For every V ∈
V , fix paV , uV . If there exists an instance n = 1, . . . , N

such that V ̸∈ Z(n) and pa
(n)
V = paV , u

(n)
V = uV , the

posterior over µ(paV ,uV )
V is given by, for ∀v ∈ ΩV ,

P
(
µ(paV ,uV )
v = 1 | v̄, ū

)
= 1v=v(n) . (15)

Otherwise, µ(paV ,uV )
V is drawn uniformly from ΩV .

Consider now exogenous parameters θ. For every U ∈
U , fix u. Let nu =

∑N
n=1 1u(n)=u be the number of

instances in u(n) equal to u. By the conjugacy of the
Dirichlet distribution, the complete conditional of θu is,

(θ1, . . . , θdU
) ∼ Dir

(
β
(1)
U , . . . , β

(dU )
U

)
,

where β
(u)
U = α

(u)
U + nu for u = 1, . . . , dU .

(16)

Doing so eventually produces values drawn from the pos-
terior distribution over

(
θ,µ, Ū | V̄

)
. Given parameters

θ,µ, we compute the counterfactual probability θctf =
P (yx, . . . ,zw) following the three-step algorithm in (Pearl,
2000) which consists of abduction, action, and prediction.
Thus computing θctf from each draw θ,µ, Ū eventually
gives us the draw from the posterior distribution P (θctf | v̄).

3.1. Collapsed Gibbs Sampling

We describe next an alternative MCMC algorithm that ap-
plies to Dirichlet priors in Eq. (12),and which will be ad-
vantageous in some other settings. For n = 1, . . . , N , let
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Ū−n denote the set difference Ū \U (n); similarly, we write
V̄−n = V̄ \ V (n). Our collapsed Gibbs sampler first iter-
atively draws values from the conditional distribution over(
U (n) | V̄ , Ū−n

)
for every n = 1, . . . , N as follows.

• Sampling P
(
u(n) | v̄, ū−n

)
. At each iteration, draw

U (n) from the conditional distribution given by

P
(
u(n) | v̄, ū−n

)
∝

∏
V ∈V \Z(n)

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
∏
U∈U

P
(
u(n) | v̄−n, ū−n

)
. (17)

Among quantities in the above equation, for every V ∈
V \ Z(n), if there exists an instance i ̸= n such that
V ̸∈ Z(i) and pa

(i)
V = pa

(n)
V , u(i)

V = u
(n)
V ,

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
= 1v(n)=v(i) . (18)

Otherwise, the above probability is equal to 1/|ΩV |.
For every U ∈ U , let ū−n be a set of exogenous samples{
u(1), . . . , u(N)

}
\ {u(n)}. Let {u∗1, . . . , u∗K} denote K

unique values that samples in ū−n take on. The condi-
tional distribution over

(
U (n) | V̄−n, Ū−n

)
is given by,

for hyperparameters αU =
∑dU

u=1 α
(u)
U ,

P
(
u(n) | v̄−n, ū−n

)
(19)

=


n∗k + α

(u∗
k)

U

αU +N − 1
if u(n) = u∗k

α
(u(n))
U

αU +N − 1
if u(n) ̸∈ {u∗1, . . . , u∗K}

where n∗k =
∑

i ̸=n 1u(i)=u∗
k
, for k = 1, . . . ,K, records

the number of values u(i) ∈ ū−n that are equal to u∗k.

Doing so eventually produces exogenous variables drawn
from the posterior distribution of

(
Ū | V̄

)
. We then sample

parameters from the posterior distribution of
(
θ,µ | Ū , V̄

)
;

complete conditional distributions P (µ,θ | v̄, ū) are given
in Eqs. (15) and (16). Finally, computing θctf from each
sample θ,µ gives a draw from the posterior P (θctf | v̄).

When the cardinality dU of exogenous domains is high, the
collapsed Gibbs sampler described here is more computa-
tional efficient than the blocked sampler, since it does not
iteratively draw parameters θ,µ in the high-dimensional
space. Instead, the collapsed sampler only draws θ,µ once
after samples drawn from the distribution of

(
Ū | V̄

)
con-

verge. On the other hand, when the cardinality dU is reason-
ably low, the blocked Gibbs sampler is preferable since it
exhibits better convergence (Ishwaran & James, 2001).

3.2. Credible Intervals over Counterfactuals

Given a MCMC sampler, one could compute credible inter-
vals over the unknown counterfactual probability θctf from
the posterior distribution P (θctf | v̄).
Definition 3.1. Fix α ∈ (0, 1]. A 100(1 − α)% credible
interval [lα, rα] for θctf is given by

lα = sup {x | P (θctf ≤ x | v̄) = α/2} ,
rα = inf {x | P (θctf ≤ x | v̄) = 1− α/2} .

(20)

For a 100(1 − α)% credible interval [lα, rα], any counter-
factual probability θctf that is compatible with observational
data v̄ lies between the interval lα and rα with probability
1 − α. The 100% credible interval [l0, r0] is the smallest
closed set (i.e., the closure) containing the union of all cred-
ible intervals [lα, rα], ∀α ∈ (0, 1]. For consistency, we
also define lα ≜ l0 and rα ≜ r0 if α < 0. Credible in-
tervals have been applied in the literature for computing
bounds over partially identifiable parameters provided with
finite observational data, including in artificial intelligence
(Chickering & Pearl, 1997; Richardson et al., 2011) and in
econometrics (Imbens & Rubin, 1997; Poirier, 1998; Im-
bens & Manski, 2004; Vansteelandt et al., 2006; Romano
& Shaikh, 2008; Stoye, 2009; Bugni, 2010; Todem et al.,
2010; Moon & Schorfheide, 2012).

Formally, let ρ (θ) and ρ (µ) be probability density func-
tions for prior distributions over to model parameters θ
and µ. We say priors over θ and µ have full support if
density functions ρ (θ) > 0 and ρ (µ) > 0 for every pos-
sible realization of θ,µ. For any z ∈ Z, let Nz denote
the number of samples in v̄ drawn from P (Vz); therefore,∑

z∈Z Nz = N . Our next result shows that credible inter-
vals from the posterior distribution effectively approximate
the optimal counterfactual bounds in Eq. (2) with increasing
accuracy as more observational data is obtained.

Theorem 3.2. Given a causal diagram G and finite samples
v̄ =

{
v(n)

}N
n=1

, let [l0, r0] be the 100% credible inter-
val for θctf = P (yx, . . . ,zw), and let [l, r] be the optimal
bound over P (yx, . . . ,zw) given by Eq. (9). If priors over
θ, µ have full support,

1. The credible interval [l0, r0] contains the optimal
bound [l, r], i.e., [l, r] ⊆ [l0, r0].

2. The credible interval [l0, r0] converges almost surely to
the tight bound [l, r] as more samples Nz are obtained,
i.e., [l0, r0]

a.s.−−→ [l, r] when Nz →∞ for every z ∈ Z.

In words, Thm. 3.2 formalizes the sense where the 100%
credible interval [l0, r0] contains the optimal counterfactual
bound [l, r], and asymptotically converges to the optimal
[l, r] as the number of samples Nz from every z ∈ Z grows.

Let
{
θ(t)
}T
t=1

be T samples drawn from P (θctf | v̄). One
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Algorithm 1 CREDIBLEINTERVAL

1: Input: Credible level α, tolerance level δ, ϵ.
2: Output: An credible interval [lα, rα] for θctf.
3: Draw T = ⌈2ϵ−2 ln(4/δ)⌉ samples

{
θ(1), . . . , θ(T )

}
from the posterior distribution P (θctf | v̄).

4: Return interval
[
l̂α(T ), r̂α(T )

]
(Eq. (21)).

could compute the 100(1 − α)% credible interval for θctf
using following estimators (Sen & Singer, 1994):

l̂α(T ) = θ(⌊(α/2)T⌋+1), r̂α(T ) = θ(⌈(1−α/2)T⌉), (21)

where estimates θ(⌊(α/2)T⌋+1) and θ(⌈(1−α/2)T⌉) are the
(⌊(α/2)T ⌋+ 1)th smallest and the ⌈(1− α/2)T ⌉th small-
est samples of

{
θ(t)
}

4. Our next results establish non-
asymptotic deviation bounds for empirical estimates of cred-
ible intervals defined in Eq. (21). This allows us to deter-
mine the sufficient number of draws T that is required for
approximating a 100(1− α)% credible interval.
Lemma 3.3. Fix T > 0 and δ ∈ (0, 1). Let function
f(T, δ) =

√
2T−1 ln (4/δ). With probability at least 1− δ,

estimators l̂α(T ), r̂α(T ) for any α ∈ [0, 1) is bounded by

lα−f(T,δ) ≤ l̂α(T ) ≤ lα+f(T,δ),

rα+f(T,δ) ≤ r̂α(T ) ≤ rα−f(T,δ).
(22)

We summarize our algorithm, CREDIBLEINTERVAL, in
Alg. 1. It takes a credible level α and tolerance levels δ, ϵ
as inputs. In particular, CREDIBLEINTERVAL repeatedly
draw T ≥ ⌈2ϵ−2 ln(4/δ)⌉ samples from P (θctf | v̄). It then
computes estimates l̂α(T ), ĥα(T ) from drawn samples fol-
lowing Eq. (21) and return them as the output. It follows
immediately from Lem. 3.3 that such a procedure efficiently
approximates a 100(1− α)% credible interval.
Corollary 3.4. Fix δ ∈ (0, 1) and ϵ > 0. With
probability at least 1 − δ, the interval [l̂, r̂] =
CREDIBLEINTERVAL(α, δ, ϵ) for any α ∈ [0, 1) is bounded
by l̂ ∈ [lα−ϵ, lα+ϵ] and r̂ ∈ [rα+ϵ, rα−ϵ].

Corol. 3.4 implies that any counterfactual probability θctf
compatible with the dataset v̄ falls between [l̂, r̂] =

CREDIBLEINTERVAL(α, δ, ϵ) with P
(
θctf ∈ [l̂, r̂] | v̄

)
≈

1− α± ϵ. As the tolerance rate ϵ→ 0, [l̂, r̂] converges to a
100(1− α)% credible interval with high probability.

4. Simulations and Experiments
We demonstrate our algorithms on various synthetic and
real datasets in different causal diagrams. Overall, we found

4For any α ∈ R, let ⌈α⌉ = min{n ∈ Z | n ≥ α} denote the
smallest integer n ∈ Z larger than α. Similarly, ⌊α⌋ = max{n ∈
Z | n ≤ α} is the largest integer n ∈ Z smaller than α.

that simulation results support our findings and the pro-
posed bounding strategy consistently dominates state-of-art
algorithms. When target probabilities are identifiable (Ex-
periment 1), our bounds collapse to the true counterfactual
probabilities. For non-identifiable settings, our algorithm
obtains sharp asymptotic bounds when the closed-form so-
lutions already exist (Experiments 2 & 3); and obtains novel
bounds in other more general cases that consistently im-
prove over existing strategies (Experiment 4).

In all experiments, we evaluate our proposed strategy using
credible intervals (ci). We draw at least 4 × 103 samples
from the posterior distribution P (θctf | v̄) over the target
counterfactual. This allows us to compute 100% credible
interval over θctf within error ϵ = 0.05, with probability at
least 1−δ = 0.95. As the baseline, we include the true coun-
terfactual probability θ∗. We refer readers to Appendix C
for more details on the simulation setup and additional ex-
periments on other causal diagrams and datasets.

Experiment 1: Frontdoor Graph. In this experiment,
we evaluate our algorithm on interventional probabilities
that are identifiable from the observational data. In this case,
the bounds over the target probability should collapse to a
point estimate. Consider the “Frontdoor” graph described
in Fig. 1c where X,Y,W are binary variables in {0, 1};
U1, U2 ∈ R. In this case, any interventional probability
P (yx) is identifiable from the observational distribution
P (X,W, Y ) through the frontdoor adjustment (Pearl, 2000,
Thm. 3.3.4). We collect N = 104 observational samples
v̄ = {x(n), y(n), w(n)}Nn=1 from a synthetic SCM instance.
Fig. 3a shows samples drawn from the posterior distribution
(P (Yx=0 = 1) | v̄). The analysis reveals that these samples
collapse to the actual probability P (Yx=0 = 1) = 0.5085,
which confirms the identifiability of P (yx) in the “frontdoor”
graph. This result shows that our sampler is able to draw
values from the posterior of identifiable probabilities.

Experiment 2: Probability of Necessity and Sufficiency.
In this experiment, we compare credible intervals obtained
by our algorithm with sharp bounds over unknown coun-
terfactual probabilities derived from the observational data.
Consider the “Bow” diagram in Fig. 1d where X,Y ∈
{0, 1} and U ∈ R. We study the problem of evaluating
the probability of necessity and sufficiency (for short, PNS)
P (Yx=1 = 1, Yx=0 = 0) from the observational distri-
bution P (X,Y ). The non-identifiability of PNS with the
unobserved confounding between X and Y has been ac-
knowledged in (Avin et al., 2005). Tian & Pearl (2000)
introduced the sharp bound for P (Yx=1 = 1, Yx=0 = 0)
from P (X,Y ), labelled as opt. We collect N = 103 obser-
vational samples v̄ = {x(n), y(n)}Nn=1 from a randomly gen-
erated SCM instance. Fig. 3c shows samples drawn from the
posterior distribution over (P (Yx=1 = 1, Yx=0 = 0) | v̄).
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(a) Frontdoor (b) PNS (c) IST (d) Non-IV

Figure 3: Simulation results for Experiments 1-4 showing posterior samples of target counterfactuals. For all plots (a - d), ci
represents our proposed algorithm; θ∗ is the actual counterfactual probability; and opt is the optimal asymptotic bounds.

The analysis reveals that the 100% credible interval (ci)
matches the optimal PNS bound l = 0, r = 0.6775 over the
actual PNS probability P (Yx=1 = 1, Yx=0 = 0) = 0.1867,
which confirms the efficacy of the proposed approach.

Experiment 3: International Stroke Trials (IST). In this
experiment, we evaluate our algorithm on a real-life dataset
and show that it could consistently obtain sharp bounds over
unknown counterfactual probabilities. International stroke
trials was a large, randomized, open trial of up to 14 days
of antithrombotic therapy after stroke onset (Carolei et al.,
1997). The aim of the trial was to provide reliable evidence
on the efficacy of aspirin and of heparin. In particular, the
treatment X is a pair (i, j) where i ∈ {0, 1} stands for as-
pirin allocation; j ∈ {0, 1, 2} stands for heparin allocation.
The primary outcome Y ∈ {0, . . . , 3} is the health of the
patient 6 months after the treatment, where 0 stands for
death, 1 for being dependent on the family, 2 for the partial
recovery, and 3 for the full recovery.

To emulate the presence of unobserved confounding, we
filter the experimental data following a procedure in (Kallus
& Zhou, 2018). Doing so allows us to obtain N = 103 syn-
thetic observational samples v̄ = {x(n), y(n)}Nn=1 that are
compatible with the “Bow” diagram of Fig. 1d. We are in-
terested in evaluating the probability P

(
Yx=(1,0) ≥ 2

)
, i.e.,

the treatment effect of only assigning aspirin X = (1, 0) for
the recovery of patients Y ≥ 2. As a baseline, we also in-
clude the optimal bound for P (yx) from P (X,Y ) (Manski,
1990), labeled as opt, which coincides with the solution of
the credal network solver (Zaffalon et al., 2020). Simulation
results, shown in Fig. 3c, reveal that both algorithms achieve
effective bounds containing target interventional probability
P
(
Yx=(1,0) ≥ 2

)
= 0.3775. The 100% credible interval

is lci = 0.1905, rci = 0.6239, which matches the optimal
bounding strategy (lopt = 0.1861, ropt = 0.6343).

Experiment 4: Non-IV This experiment evaluates our
algorithm in a novel partial identification setting where the
closed-form bounding solution does not exist. Our pro-
posed approach is able to obtain a valid bound over the

unknown counterfactual probability. Consider the “Non-
IV’ diagram in Fig. 1b where X,Y, Z ∈ {0, . . . , 9} and
U1, U2 ∈ R. We are interested in evaluating counterfactual
probabilities P (z, xz′ , yx′) from the observational distribu-
tion P (X,Y, Z) and interventional distributions P (Xz, Yz)
induced by interventions do(Z = z) for z = 0, . . . , 9.
We collect N = 103 samples v̄ = {x(n), y(n), z(n)}Nn=1

from a SCM instance of Fig. 1b where each sample
X(n), Y (n), Z(n) is an independent draw from P (X,Y, Z)
or P (Xz, Yz). To address the challenge of the high-
dimensional exogenous domains, we apply the proposed col-
lapsed Gibbs sampler to obtain samples from the posterior
distribution (P (Z +Xz=0 + Yx=0 ≥ 14) | v̄). Simulation
results, shown in Fig. 3d, reveal that our proposed approach
is able to achieve an effective bound that contains the actual
counterfactual probability P (Z +Xz=0 + Yx=0 ≥ 14) =
0.6378. The 100% credible interval (ci) is equal to l =
0.4949, r = 0.8482, which is a valid bound containing the
target countrefactual. To our best knowledge, no existing
bounding strategy is applicable for this setting.

5. Conclusion
This paper investigated the problem of partial identification
of counterfactual distributions, which concerns with bound-
ing counterfactual probabilities from an arbitrary combina-
tion of observational and experimental data, provided with a
causal diagram encoding qualitative assumptions about the
data-generating process. We introduced a special parametric
family of SCMs with discrete exogenous variables, taking
values from a finite set of unobserved states, and showed
that it could represent all counterfactual distributions (over
finite observed variables) in any causal diagram. Using
this result, we reduced the partial identification problem
into a polynomial program and developed novel algorithms
to approximate the optimal asymptotic bounds over target
counterfactual probabilities from finite samples obtained
through arbitrary observations and experiments.
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A. On the Expressive Power of Canonical
Structural Causal Models

We will provide proofs for the partial counterfactual iden-
tification algorithm presented in Sec. 2, which establishes
the expressive power of canonical SCMs in representing
counterfactual distributions in an arbitrary causal diagram
containing observed variables with finite domains.

We start the discussion by introducing some necessary no-
tations and concepts. The probability distribution for every
exogenous variable U ∈ U is characterized with a probabil-
ity space. It is frequently designated ⟨ΩU ,FU , PU ⟩ where
ΩU is a sample space containing all possible outcomes; FU

is a σ-algebra containing subsets of ΩU ; PU is a probability
measure on FU normalized by PU (ΩU ) = 1. Elements of
FU are called events, which are closed under operations
of set complement and unions of countably many sets. By
means of PU , a real number PU (A) ∈ [0, 1] is assigned to
every event A ∈ FU ; it is called the probability of event A.

For an arbitrary set of exogenous variables U , its realization
U = u is an element in the Cartesian product×U∈U ΩU ,
represented by a sequence (u)U∈U . If now AU ∈ ΩU ,
∀U ∈ U , we may be interested in inferring whether a se-
quence of events U ∈ AU for every U ∈ U occurs. Such an
event is represented by a subset×U∈U AU ⊆×U∈U ΩU .
The products ×U∈UAU with AU running through FU gen-
erate precisely the product σ-algebra

⊗
U∈U FU . The prod-

uct measure
⊗

U∈U PU is the only probability measure P
with restrictions to

⊗
U∈U FU that satisfies the following

consistency condition

P

(
×
U∈U

AU

)
=
∏
U∈U

PU (AU ) , (23)

for arbitrary AU ∈ FU . It is obvious that P is a probability
measure. Consequently,〈

×
U∈U

ΩU ,
⊗
U∈U

FU ,
⊗
U∈U

PU

〉
(24)

defines the product of probability spaces ⟨ΩU ,FU , PU ⟩,
U ∈ U . It is adequate to describe all “measurable events”
occurring to exogenous variables U .

Recall that for subsets X,Y ⊆ V , counterfactual random
variables (or potential responses) Yx(u) is defined as the
solution of Y in the submodel Mx induced by intervention
do(x) given the configuration U = u. For any y ∈ ΩY , let
the inverse image Y −1x (y) be the set of values u generating
the event Yx(u) = y, i.e.,

Y −1x (y) = {u ∈ ΩU | Yx(u) = y} . (25)

Evidently, we are dealing with a
⊗

U∈U FU -measurable
mapping Yx : u 7→ y. Because of this measurability, the

inverse image Y −1x (y) is an event in
⊗

U∈U FU for any
realization y. Thus P

(
Y −1x (y)

)
is defined as the probabil-

ity of Yx taking on a value y. Similarly, for any Y , . . . ,Z,
X, . . . ,W ⊆ V , the probability of a sequence of counter-
factual events Yx = y, . . . ,Zw = z is defined as:

P (yx, . . . ,zw) = P
(
Y −1x (y) ∩ · · · ∩Z−1w (z)

)
.

We refer readers to (Durrett, 2019; Bauer, 1972) for a de-
tailed discussion on measure-theoretic probability concepts.

A.1. Proof for Theorem 2.4

We first provide the construction for canonical SCMs in
Thm. 2.4, showing that they could generate all counterfac-
tual distributions in an arbitrary causal diagram. The validity
and tightness of bounds [l, r] in Eq. (9) naturally follows.

For every endogenous V ∈ V , let ΩPaV
7→ ΩV denote

the hypothesis class containing all functions mapping from
domains of PAV to V . Since V are discrete variables with
finite domains, the cardinality of the class ΩPaV

7→ ΩV

must be also finite. Given any configuration UV = uV , the
induced function fV (·, uV ) must correspond to a unique ele-
ment in the hypothesis class ΩPAV

7→ ΩV . Such mappings
lead to a finite partition over the exogenous domain ΩUV

.

Definition A.1. For an SCM M = ⟨V ,U ,F , P ⟩, for ev-
ery V ∈ V , let functions in ΩPAV

7→ ΩV be ordered
by
{
h
(i)
V | i ∈ IV

}
where IV = {1, . . . ,mV },mV =

|ΩPAV
7→ ΩV |. A equivalence class U (i)

V for function h
(i)
V ,

i = 1, . . . ,mV , is a subset in ΩUV
such that

U (i)
V =

{
uV ∈ ΩUV

| fV (·, uV ) = h
(i)
V

}
. (26)

Definition A.2 (Canonical Partition). For an SCM M =

⟨V ,U ,F , P ⟩,
{
U (i)
V | i ∈ IV

}
is the canonical partition

over exogenous domain ΩUV
for every V ∈ V .

Def. A.2 extends the canonical partition in (Balke & Pearl,
1994) which was designed for binary variables X,Y, Z ∈
{0, 1} in the “IV” diagram of Fig. 1a.

As exogenous variables UV vary along its domain, regard-
less of how complex the variation is, its only effect is to
switch the functional relationship between PaV and V
among elements in class ΩPAV

7→ ΩV . Formally,

Lemma A.3. For an SCM M = ⟨V ,U ,F , P ⟩, for each
V ∈ V , function fV ∈ F could be decomposed as:

fV (paV , uV ) =
∑
i∈IV

h
(i)
V (paV )1uV ∈U(i)

V
. (27)

Proof. By the definition of canonical partitions (Def. A.2),
for every i = 1, . . . ,mV , fix any uV ∈ U (i)

V .



Partial Counterfactual Identification

We must have fV (·, uV ) = h
(i)
V (·). This implies

fV (paV , uV ) = h
(i)
V (paV ) for any PAV = paV . Recall

that
{
U (i)
V | i = 1, . . . ,mV

}
forms a partition over the do-

main ΩUV
. Given the same paV , uV , the r.h.s. of Eq. (27)

must equate to h
(i)
V (paV ), which completes the proof.

As an example, consider an SCM M associated with the
“IV” graph of Fig. 1a where X,Y, Z are binary variables
contained in {0, 1}; U1, U2 are continuous variables drawn
uniformly from the interval [0, 3]. Values of X,Y, Z are
decided by functions defined as follows, respectively,

x← fX(z, u2) = 1z≤u2≤z+2,

y ← fY (x, u2) = 1u2<x + 1u2>x+2,

z ← fZ(u1) = 1u1≤1.5,

(28)

We show in Fig. 4 the graphical representation of canonical
partitions induced by functions fX , fY and fZ respectively.
A detailed description is provided in Table 1. It follows from
the decomposition of Lem. A.3 that functions fX , fY , fZ in
Eq. (28) could be written as follows:

fX(z, u2) = 1u2∈[0,1)¬z + 1u2∈[1,2]1 + 1u2∈(2,3]z

fY (x, u2) = 1u2∈[0,1)x+ 1u2∈[1,2]0 + 1u2∈(2,3]¬x,
fZ(u1) = 1u1∈[0,1.5]1 + 1u1∈(1.5,3]0.

Let I denote the product of indexing sets "V ∈V IV . For
any index i ∈ I , we use iV to represent the element in i
restricted to V ∈ V . We omit the subscript V when it is
obvious; therefore, U (i)

V = U (iV )
V , h(i)

V = h
(iV )
V . Our next re-

sult establishes a universal decomposition of counterfactual
distributions in any SCM using canonical partitions.

Lemma A.4. For an SCM M = ⟨V ,U ,F , P ⟩, for any
Y , . . . ,Z,X, . . . ,W ⊆ V 5,

P (yx, . . . ,zw)

=
∑
i∈I

1Yx(i)=y,...,Zw(i)=zP

( ⋂
V ∈V

U (i)
V

)
,

(29)

where variables of the form Yx(i) = {Yx(i) | ∀Y ∈ Y };
every Yx(i) is recursively defined as:

Yx(i) =

{
xY if Y ∈X

h
(i)
Y ((PAY )x (i)) otherwise

(30)

Proof. We will first prove the following claims: for arbitrary
subsets Y ,X ⊆ V , for any u,x,y,

1Yx(u)=y =
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
. (31)

5For an arbitrary subset U ⊆ ΩU , we will consistently use
P (U) as a shorthand for the probability P (U ∈ U).

u2

U(2)
X

x← z
U(3)

X
x← ¬z

U(4)
X

x← 1

0 1 2 3

(a) x← fX(z, u2)

u2

U(3)
Y

y ← ¬x
U(2)

Y
y ← x

U(1)
Y

y ← 0

0 1 2 3

(b) y ← fY (x, u2)

u1

U(1)
Z

z ← 0

U(2)
Z

z ← 1

0 1.5 3

(c) z ← fZ(u1)

Figure 4: Canonical partitions for exogenous domains over
U1, U2 induced by functions of X,Y, Z defined in Eq. (28).

0 ≤ U2 < 1 1 ≤ U2 ≤ 2 2 < U2 ≤ 3
Z = 0 X = 1 X = 1 X = 0
Z = 1 X = 0 X = 1 X = 1

(a) x← fX(z, u2)

0 ≤ U2 < 1 1 ≤ U2 ≤ 2 2 < U2 ≤ 3
X = 0 Y = 0 Y = 0 Y = 1
X = 1 Y = 1 Y = 0 Y = 0

(b) y ← fY (x, u2)

0 ≤ U1 < 1.5 1.5 ≤ U1 ≤ 3
Z = 1 Z = 0

(c) z ← fZ(u1)

Table 1: Canonical partitions for exogenous domains over
U1, U2 induced by functions of X,Y, Z defined in Eq. (28).

Let GX be a subgraph obtained from the causal diagram
G by removing all incoming arrows of X . We will prove
Eq. (31) by induction on n = maxY ∈Y

∣∣An(Y )GX
∣∣.

Base Case n = 1. Recall that an intervention do(x) set
values of variables X as constants x. For any Y ∈X ∩ Y ,
let xY be the values assigned to Y in x. It is verifiable that

1Yx(u)=y = 1y=xY
(32)

As for every variable Y ∈ Y \X , we must have its parent
nodes PAY = ∅ since n = 1. This implies

1Yx(u)=y = 1fY (uY )=y =
∑
i∈IY

1
h
(i)
Y =y

1
uY ∈U(i)

Y
(33)
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The last step follows from the decomposition in Lem. A.3.
Eqs. (32) and (33) together imply that

1Yx(u)=y

=
∑
i∈I

∏
Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

1
h
(i)
Y =y

∏
V ∈V

1
uV ∈U(i)

V

=
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
.

The last step follows from the definition of variables Yx(i)
in Eq. (30) given an index i ∈ I .

Induction Case n = k + 1. Assume that Eq. (31) holds
for n = k. We will prove for the case n = k + 1. For
every Y ∈X ∩Y , 1Yx(u)=y is given in Eq. (32). For every
Y ∈ Y \X , the decomposition in Lem. A.3 implies:

1Yx(u)=y

= 1fY ((PAY )x(u),uY )=y

= 1

{
y =

∑
i∈IY

h
(i)
Y ((PAY )x (u))1

uY ∈U(i)
Y

}
=
∑
i∈IY

1
h
(i)
Y ((PAY )x(u))=y

1
uY ∈U(i)

Y

=
∑
i∈IY

∑
paY

1
h
(i)
Y (paY )=y

1(PAY )x(u)=paY
1
uY ∈U(i)

Y
.

The last step hold by conditioning on events (PAY )x (u) =
paY , ∀paY ∈ ΩPAY

. Since we assume Eq. (31) holds for
Case n = k, the above equation could be further written as

1Yx(u)=y =
∑
i∈IY

∑
paY

1
h
(i)
Y (paY )=y

1
uY ∈U(i)

Y

·
∑
i∈I

1(PAY )x(u)=paY

∏
V ∈V

1
uV ∈U(i)

V

A few simplification gives:

1Yx(u)=y

=
∑
i∈I

∑
paY

1
h
(i)
Y (paY )=y

1(PAY )x(u)=paY

∏
V ∈V

1
uV ∈U(i)

V

=
∑
i∈I

1
h
(i)
Y ((PAY )x(u))=y

∏
V ∈V

1
uV ∈U(i)

V
. (34)

Eqs. (32) and (34) together imply that

1Yx(u)=y

=
∑
i∈I

 ∏
Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

1
h
(i)
Y ((PAY )x(u))=y


·
∏
V ∈V

1
uV ∈U(i)

V

=
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
.

Again, the last step follows from the definition of variables
Yx(i) in Eq. (30) given an index i ∈ I .

We are now ready to prove Eq. (29). The statement of
Eq. (31) implies that for any Y , . . . ,Z,X, . . . ,W ⊆ V ,

P (yx, . . . ,zw)

=

∫
ΩU

1Yx(u)=y,...,Zw(u)=zdP (u)

=

∫
ΩU

(∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V

)
∧

· · · ∩

(∑
i∈I

1Zw(i)=z

∏
V ∈V

1
uV ∈U(i)

V

)
dP (u)

Simplifying the above equation gives:

P (yx, . . . ,zw)

=

∫
ΩU

∑
i∈I

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=z

∏
V ∈V

1
uV ∈U(i)

V
dP (u)

=
∑
i∈I

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=z

∫
ΩU

∏
V ∈V

1
uV ∈U(i)

V
dP (u)

=
∑
i∈I

1Yx(i)=y,...,Zw(i)=zP

( ⋂
V ∈V

U (i)
V

)
.

In the above equations, the last two steps hold since variables
Yx(i), . . . ,Zw(i) are not functions of exogenous variables
U . This completes the proof.

Let C(G) denote the collection of all maximal c-components
(Def. 2.2) in a causal diagram G. For instance, in the
“IV” diagram G of Fig. 1a, C(G) contains c-components
C(U1) = {Z}, C(U2) = {X,Y }. The following proposi-
tion shows that probabilities over canonical partitions fac-
torize over c-components in a causal diagram.

Lemma A.5. For an SCM M = ⟨V ,U ,F , P ⟩, let G be
the associated causal diagram. For any i ∈ I ,

P

( ⋂
V ∈V

U (i)
V

)
=

∏
C∈C(G)

P

( ⋂
V ∈C

U (i)
V

)
. (35)

Proof. For any c-compoment C ∈ C(G), let UC =
∪V ∈CUV the set of exogenous variables affecting (at least
one of) endogenous variables in C. By the definition of
c-components (Def. 2.2), it is verifiable that for two dif-
ferent c-compoments C1,C2 ∈ C(G), their corresponding
exogenous variables UC1

, UC2
do not share any element,

i.e., UC1
∩ UC2

= ∅. We complete the proof by noting that
exogenous variables in U are mutually independent.

As an example, consider again the SCM M compatible with
Fig. 1a defined in Eq. (28). The event Z = 1, Xz=0 =
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1, Yx=1 = 0 occurs if any only if U1 ∈ U (2)
Z and U2 ∈(

U (3)
X ∪ U (4)

X

)
∩
(
U (1)
Y ∪ U (3)

Y

)
. This implies

P (Z = 1, Xz=0 = 1, Yx=1 = 0)

= P
(
U (2)
Z ∩ (U (3)

X ∪ U (4)
X ) ∩ (U (1)

Y ∪ U (3)
Y )
)

= P
(
U (2)
Z

)
P
(
U (3)
X ∪ U (4)

X ) ∩ (U (1)
Y ∪ U (3)

Y )
)
.

The last step holds since {Z} and {X,Y } are two different
c-components. It is verifiable from Fig. 4 that U (2)

Z = {u1 ∈
[0, 1.5]},

(
U (3)
X ∪ U (4)

X

)
∩
(
U (1)
Y ∪ U (3)

Y

)
= {u2 ∈ [1, 2]}.

The above equation could be further written as:

P (Z = 1, Xz=0 = 1, Yx=1 = 0)

= P (U1 ∈ [0, 1.5])P (U2 ∈ [1, 2]) =
1

6
.

The last step follows since variables U1, U2 are drawn uni-
formly at random over the interval [0, 3].

Lems. A.4 and A.5 together allow us to write any counter-
factual distribution in an SCM as a function of products
of probabilities assigned to the intersections of canonical
partitions in every c-component. To prove Thm. 2.4, it is
thus sufficient to construct a canonical SCM N from an
arbitrary SCM M such that (1) M,N are compatible with
the same causal diagram G; and (2) M,N generate the same
probabilities over canonical partitions. This section will
describe how to construct such a discrete SCM.

For a c-component C in a causal diagram G, we denote
by UC = ∪V ∈CUV the union of exogenous variables UV

affecting an endogenous variable V for every V ∈ C. , m =
|UC |. For convenience, we consistently write ⟨Ωi,Fi, ρi⟩
as the probability space of Ui, i = 1, . . . ,m. The product
of these probability spaces is thus written as〈

m×
i=1

Ωi,

m⊗
i=1

Fi,

m⊗
i=1

ρi

〉
. (36)

For any SCM M compatible with the diagram G, the joint
distribution over events defined by canonical partitions U (i)

V

associated with variables V ∈ C is given by

P

( ⋂
V ∈C

U (i)
V

)

=

∫
×m

i=1 Ωi

∏
V ∈C

1
uV ∈U(i)

V
d

(
m⊗
i=1

ρi

)
.

(37)

Our goal is to show that all correlations among events U (i)
V ,

V ∈ V , induced by exogenous variables described by arbi-
trary probability spaces could be produced by a “simpler”
generative process with discrete exogenous domains.

Lemma A.6. Any distribution P
(⋂

V ∈C U
(i)
V

)
in Eq. (37)

could be reproduced with a generic model of the form:

P

( ⋂
V ∈C

U (i)
V

)

=

m∑
j=1

d∑
uj=1

∏
V ∈C

1
uV ∈U(i)

V

m∏
j=1

P (uj),

(38)

where every exogenous variable Uj ∈ U takes values in a
finite domain {1, . . . , d}, d =

∏
V ∈C |ΩPAV

7→ ΩV |.

(Rosset et al., 2018, Proposition 2) applied a classic result of
Carathéodory theorem in convex geometry (Carathéodory,
1911) and showed that the observational distribution in any
causal diagram could be generated using discrete exogenous
variables, assuming that exogenous variables are drawn
from distributions with probability density functions. We
here present a constructive proof that applies to the general
framework of measure-theoretic probability theory.

Proof of Lemma A.6. Let P⃗ be a vector representing prob-
abilities of

(
P
(⋂

V ∈C U
(i)
V

))
i∈I

. Note that for every

V ∈ V , there are |ΩPAV
7→ ΩV | equivalence classes U (i)

V .
P⃗ is thus a vector with d =

∏
V ∈C |ΩPAV

7→ ΩV | elements.

Since
∑

i P
(⋂

V ∈C U
(i)
V

)
= 1, it only takes a vector with

d− 1 dimensions to determine P⃗ . We could thus see P⃗ as
a point in the (d − 1)-dimensional real space. Similarly,(
P⃗ , 1

)
is vector in Rd where the d-th element is equal to 1

Fix an exogenous variable U1 ∈ UC . We define function
Pu1

(⋂
V ∈C U

(i)
V

)
as the distribution over canonical par-

titions when U1 is fixed as a constant u1 ∈ Ω1. That is,

Pu1

( ⋂
V ∈C

U (i)
V

)

=

∫
×m

j=2 Ωi

∏
V ∈C

1
uV ∈U(i)

V
d

 m⊗
j=2

Pj


U1=u1

(39)

The associativity of the product of probability spaces (Bauer,
1972, Ch. 3.3) generally implies:

m⊗
j=1

Fj = F1 ⊗

 m⊗
j=2

Fj

 ,

m⊗
j=1

Pj = P1 ⊗

 m⊗
j=2

Pj

 .

(40)

Let P⃗u1
be a vector in Rd−1 representing probabilities of

Pu1

(⋂
V ∈C U

(i)
V

)
and let

(
P⃗u1

, 1
)

be vector in Rd where
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the d-th element is equal to 1. Applying Fubini’s Theorem
(Durrett, 2019, Thm. 1.7.2) implies that function u1 7→(
P⃗u1 , 1

)
is F1-measurable. That is, ⟨Ω1,F1, P1⟩ yields a

probability measure for a set
{(

P⃗u1
, 1
)
| ∀u1 ∈ Ω1

}
with

respective to Borel sets in real space Rd with average(
P⃗ , 1

)
=

∫
Ω1

(
P⃗u1 , 1

)
dP1. (41)

It can be shown that the probability vector
(
P⃗ , 1

)
is a point

lying in the convex hull of a set
{(

P⃗u1 , 1
)
| ∀u ∈ ΩU

}
(see (Blackwell & Girshick, 1979, Thm. 2.4.1) and its exten-
sion to arbitrary probability measures in (Rubin & Wesler,
1958)). This means that there exists a finite set of vectors(
P⃗
u
(1)
1
, 1
)
, . . . ,

(
P⃗
u
(n)
1

, 1
)

and a sequence of positive co-
efficients α1, . . . , αn > 0 such that

(
P⃗ , 1

)
=

n∑
k=1

αk

(
P⃗
u
(k)
1

, 1
)
. (42)

The above equation implies

P⃗ =

n∑
k=1

αkP⃗u
(k)
1

, and
n∑

k=1

αk = 1 (43)

Indeed, we could further reduce the number of coeffi-
cients n by removing linearly dependent vectors. If vectors(
P⃗
u
(k)
1

, 1
)

are not linearly independent, there exists a non-

trivial solution λ1, . . . λn such that
∑

k λk

(
P⃗
u
(k)
1

, 1
)
= 0⃗.

It is verifiable that for any real value β > 0

n∑
k=1

(αk − βλk)
(
P⃗
u
(k)
1

, 1
)

(44)

=

n∑
k=1

αk

(
P⃗
u
(k)
1

, 1
)
− β

n∑
k=1

λk

(
P⃗
u
(k)
1

, 1
)

(45)

=

n∑
k=1

αk

(
P⃗
u
(k)
1

, 1
)
. (46)

The last step holds since
∑

k λk

(
P⃗
u
(k)
1

, 1
)
= 0⃗. Therefore,

coefficients αk − βλk, k = 1, . . . , n, satisfy

n∑
k=1

(αk − βλk)
(
P⃗
u
(k)
1

, 1
)
=
(
P⃗ , 1

)
. (47)

Let β be the largest value such that αk − βλk ≥ 0 for all k.
Consequently, there must exist a coefficient αk − βλk = 0.
We could then remove the corresponding vector

(
P⃗
u
(k)
1

, 1
)

from the base. This procedure continues until all remaining

vectors are linearly independent. Since
(
P⃗u1 , 1

)
∈ Rd,

there are at most d linearly independent vectors, i.e., n ≤ d.

Finally, we replace the probability measure P1 with a dis-
crete distribution P

(
U1 = u

(k)
1

)
= wk over a finite dis-

crete domain Ω∗1 =
{
u
(1)
1 , . . . , u

(d)
1

}
. Doing so generated

a new SCM N∗, with cardinality |Ω1| ≤ d, that reproduces
probabilities P

(⋂
V ∈C U

(i)
V

)
over canonical partitions in

the original SCM M . Repeatedly applying this procedure
for every exogenous U2, . . . , Um completes the proof.

Lems. A.4 to A.6 together yield a natural constructive proof
for Thm. 2.4 in an arbitrary causal diagram G.

Theorem 2.4. For an arbitrary SCM M = ⟨V ,U ,F , P ⟩,
there exists a canonical SCM N such that

1. M and N are associated with the same causal diagram,
i.e., GM = GN .

2. For any set of counterfactual variables Yx, . . . ,Zw,
PM (Yx, . . . ,Zw) = PN (Yx, . . . ,Zw).

Proof. By the definition of c-components (Def. 2.2), it is
verifiable that for two different c-compoments C1,C2 ∈
C(G), their corresponding exogenous variables UC1 , UC2

do not share any element, i.e., UC1 ∩ UC2 = ∅. Therefore,
we could repeatedly apply the construction of Lem. A.6
for every c-component C ∈ C(G). Doing so generates a
discrete SCM N satisfying conditions as follows:

1. N and M are compatible with the same diagram G;

2. N and M share the same set of structural functions F ;

3. N and M generate the same joint distribution over the in-
tersections of canonical partitions associated with every
c-component.

It follows from Lems. A.4 and A.5 that M and N must
coincide in all counterfactual distributions over endogenous
variables. This completes the proof.

A.2. Proofs for Other Results in Section 2

More generally, Thm. 2.4 implies that counterfactual dis-
tributions P (Yx, . . . ,Zw) in any SCM could always be
decomposed over a finite number of exogenous states. In
other words, when inferring about counterfactual probabili-
ties in an arbitrary causal diagram with discrete endogenous
domains, one could assume exogenous distributions to be
discrete and finite without loss of generality. Formally,

Proposition 2.5. For any SCM M = ⟨V ,U ,F , P (U)⟩,
let Yx, . . . ,Zw be an arbitrary set of counterfactual vari-
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ables. The distribution P (Yx, . . . ,Zw) decomposes as

P (yx, . . . ,zw)

=
∑
U∈U

dU∑
u=1

1Yx(u)=y,...,Zw(u)=z

∏
U∈U

P (u),
(5)

where for every exogenous U ∈ U , P (U) is a discrete dis-
tribution over a finite domain {1, . . . , dU} with cardinality
dU =

∏
V ∈C(U) |ΩPaV

7→ ΩV |. Counterfactual variables
Yx(u) = {Yx(u) | ∀Y ∈ Y } are recursively defined as:

Yx(u) =

{
xY if Y ∈X

fY ((PAY )x (u), uY ) otherwise
(6)

where xY is the value assigned to Y in x; and (PAY )x (u)
is a set of potential responses {Vx(u) | ∀V ∈ PAY }.

Proof. The finite-state decomposition of counterfactual dis-
tribution P (Yx, . . . ,Zw) in Eq. (5) follows immediately
from the construction of canonical SCM N in Thm. 2.4.

Proposition 2.6. For any SCM M = ⟨V ,U ,F , P (U)⟩,
P (V ) decomposes as follows:

P (v) =
∑
U∈U

dU∑
u=1

1V (u)=v

∏
U∈U

P (u), (7)

where for every U ∈ U , dU =
∏

V ∈Pa(C(U)) |ΩV |.

Proof. For an arbitrary set C ⊆ V , let PAC = Pa(C) \
C, i.e., the set of all direct parents of nodes in C except
themselves. The observational distribution P (V ) in any
causal diagram G could be decomposed over c-components
as follows (Tian & Pearl, 2002, Lem. 1):

P (V = v) =
∏

C∈C(G)

P
(
CpaC

= c
)
, (48)

where C(G) denote the set of all c-components in diagram
G. Next we could apply a similar discretization procedure in
Lem. A.6 to construct a canonical SCM that represents every
interventional distribution P

(
CpaC

)
while maintaining the

same causal diagram. The total number of model parameters
of P

(
CpaC

)
is given by d =

∏
V ∈Pa(C(U)) |ΩV |. Repeat-

edly discretizing every exogenous variables in U gives the
canonical SCM N .

Proposition 2.7. For any SCM M = ⟨V ,U ,F , P (U)⟩,
for any subset X,Y ⊆ V , P (Yx) decomposes as follows:

P (yx) =
∑
U∈U

dU∑
u=1

1Yx(u)=y

∏
U∈U

P (u), (8)

where for every U ∈ U , dU =
∏

V ∈C(U) |ΩPAV
× ΩV |.

Proof. It follows from the ancestral set factorization in (Cor-
rea et al., 2021, Thm. 1) that any interventional distribution
P (Yx) could be written as a function of a collection of
counterfactual distributions given by{

P
(
C̃∗

)
| ∀C ∈ C(G)

}
(49)

where for every c-component C ∈ C(G) in diagram G, C̃∗
is a set of counterfactual variables defined as:

C̃∗ =
{
VpaV

| ∀V ∈ C,∃paV ∈ ΩPAV

}
. (50)

It is thus sufficient to construct a canonical SCM N to
represent counterfactual distributions P

(
C̃∗

)
in Eq. (49).

The number of parameters for each P
(
C̃∗

)
is bounded

by d =
∏

V ∈C(U) |ΩPAV
| |ΩV |. Repeatedly discretizing

every exogenous variables in U following the procedure in
Lem. A.6 gives the canonical SCM N .

Thm. 2.4 implies that it is sufficient to search over the family
of canonical SCMs when bounding counterfactual probabili-
ties in an arbitrary causal diagram, without loss of generality.

Theorem 2.8. Given a causal diagram G and interven-
tional distributions {P (Vz) | z ∈ Z}, the solution [l, r] of
the polynomial program Eq. (9) is a tight bound over the
counterfactual probability P (yx, . . . ,zw).

Proof. It follows from Thm. 2.4 that for any SCM M ∈
M (G), there exists a canonical SCM N ∈ N (G) such that

PM (Yx, . . . ,Zw) = PN (Yx, . . . ,Zw), (51)

and for any z ∈ Z,

PM (Vz) = PN (Vz). (52)

The reverse direction of the above equations also holds since
N (G) ⊂ M (G). This means that solutions for optimiza-
tion problems in Eqs. (2) and (9) must coincide.

B. Markov Chain Monte Carlo for Partial
Counterfactual Identification

In this section, we will show derivations for complete condi-
tional distributions utilized in our proposed Gibbs samplers.
We will also provide proofs for non-asymptotic bounds for
empirical estimates of credible intervals used in Alg. 1.

B.1. Derivations of Complete Conditionals

Sampling P (ū | v̄,θ,µ). It is verifiable that variables
U (n),V (n), n = 1, . . . , N , are mutually independent given
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parameters θ,µ. This implies

P (ū | v̄,θ,µ) =
∏
U∈U

P
(
u(n) | v̄,θ,µ

)
=
∏
U∈U

P
(
u(n) | v(n),θ,µ

)
The complete conditional over

(
U (n) | V (n),θ,µ

)
, n =

1, . . . , N , is given by

P
(
u(n) | v(n),θ,µ

)
∝ P

(
u(n)v(n) | θ,µ

)
∝
∏
V ∈V

P
(
v(n) | pa(n)

V , u
(n)
V ,θ,µ

)
·
∏
U∈U

P
(
u
(n)
V | θ,µ

)
.

Among quantities in the above equation,

P
(
v(n) | pa(n)

V , u
(n)
V ,θ,µ

)
= µ

(
pa

(n)
V ,u(n)

)
v(n) ,

and

P
(
u
(n)
V | θ,µ

)
= θu for u = u

(n)
V .

Sampling P (µ,θ | v̄, ū). For every exogenous variable
U ∈ U , we denote by θU the set of parameters {θu | ∀u}.
Similarly, for every endogenous variable V ∈ V , let
µV =

{
µ
(paV ,uV )
V | ∀paV , uV

}
. Obviously, parameters

µV and θU are mutually independent, and they do not di-
rectly determine values of a variable (exogenous or endoge-
nous) simultaneously. We must have

P (µ,θ | v̄, ū) =
∏
V ∈V

P (µV | v̄, ū)
∏
U∈U

P (θU | v̄, ū) .

The above independence relationship implies that to draw
samples from the posterior P (µ,θ | v̄, ū), we could sample
distributions over

(
µV | V̄ , Ū

)
and

(
θU | V̄ , Ū

)
for every

V ∈ V and every U ∈ U separately.

Recall that for every V ∈ V , any paV , uV , µ(paV ,uV )
V =(

µ
(paV ,uV )
v | ∀v ∈ ΩV

)
is an indicator vector such that

µ(paV ,uV )
v ∈ {0, 1},

∑
v∈ΩV

µ(paV ,uV )
v = 1.

The complete conditional distribution over
(
µV | V̄ , Ū

)
,

given by Eq. (15), follows from the fact that in any discrete
SCM, the n-th observation of V ∈ V \Z(n) is decided by

v(n) ← fV

(
pa

(n)
V , u

(n)
V

)
= v,

where v is a unique element in ΩV such that µ(paV ,uV )
v = 1.

The complete conditional distribution over
(
θU | V̄ , Ū

)
,

given by Eq. (16), follows from the conjugacy of Dirichlet
distributions with regard to categorical distributions (e.g.,
see (Ishwaran & James, 2001, Sec. 5.2)).

Sampling P
(
u(n) | v̄, ū−n

)
. At each iteration, draw

U (n) from the conditional distribution given by

P
(
u(n) | v̄, ū−n

)
∝

∏
V ∈V \Z(n)

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
∏
U∈U

P
(
u(n) | v̄−n, ū−n

)
.

Among quantities in the above equation, by expanding on
valus of parameters µ(paV ,uV )

V , one could rewrite the poste-

rior distribution P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
for every

V ∈ V \Z(n) as follows

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
=

∑
paV ,uV

∑
µ
(paV ,uV )
V

µ
(paV ,uV )

v(n) 1
paV =pa

(n)
V
1
uV =u

(n)
V

· P
(
µ
(paV ,uV )
V | v̄−n, ū−n

)
. (53)

The complete conditional over
(
µ
(paV ,uV )
V | V̄−n, V̄−n

)
,

∀paV , uV , follows from the definition of discrete SCMs.
The n-th observation of V ∈ V \Z(n) is decided by

v(n) ← fV

(
pa

(n)
V , u

(n)
V

)
= v,

for a unique v ∈ ΩV such that µ(paV ,uV )
v = 1. Formally,

if there exists a sample i ̸= n such that V ̸∈ Z(i) and
pa

(i)
V = paV , u

(i)
V = uV , the posterior over µ(paV ,uV )

V is
given by

P
(
µ(paV ,uV )
v = 1 | v̄, ū

)
= 1v=v(i) .

Otherwise,

P
(
µ
(paV ,uV )
V | v̄, ū

)
=

1

|ΩV |
.

Marginalizing probabilities P
(
µ
(paV ,uV )
V | v̄, ū

)
over the

domain ΩV in Eq. (53) gives the complete conditional dis-
tribution over

(
V (n) | PA(n)

V , U
(n)
V , Ū−n, Ū−n

)
.

For every U ∈ U , the complete conditional over(
U (n) | V̄−n, Ū−n

)
, given by Eq. (16), follows immedi-

ately from the Pólya urn characterization of Dirichlet distri-
butions (e.g., see (Ishwaran & James, 2001, Sec. 4)).

B.2. Monte Carlo Estimation of Credible Intervals

Next we show the efficacy of the Bayesian approach in ap-
proximating the optimal bounds over unknown counterfac-
tual probabilities from the observational and experimental
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data. We will show that 100% credible interval converges
to the optimal bound as the total number of data increases
(to infinite), provided with “proper” prior distributions over
model parameters (to be defined).

We first introduce some necessary notations. Let Θ denote
the collection of parameters θ,µ of canonical SCMs in
the family N (G) that generate interventional distributions
P (Vz) for every z ∈ Z. Formally,

Θ =
{
(θN ,µN ) |∀N ∈ N (G),

PN (Vz) = P (Vz),∀z ∈ Z
}
.

(54)

We assume that the parameter space Θ has positive proba-
bility with regard to the prior distribution ρ, i.e.,

P (θ,µ ∈ Θ) =

∫
Θ

ρ(θ)ρ(µ)dθdµ > 0. (55)

We also assume that prior ρ has full support over domains of
θ and µ. That is, the probability density function ρ (θ) > 0
and ρ (µ) > 0 for every possible realization of θ,µ.
Theorem 3.2. Given a causal diagram G and finite samples
v̄ =

{
v(n)

}N
n=1

, let [l0, r0] be the 100% credible inter-
val for θctf = P (yx, . . . ,zw), and let [l, r] be the optimal
bound over P (yx, . . . ,zw) given by Eq. (9). If priors over
θ, µ have full support,

1. The credible interval [l0, r0] contains the optimal
bound [l, r], i.e., [l, r] ⊆ [l0, r0].

2. The credible interval [l0, r0] converges almost surely to
the tight bound [l, r] as more samples Nz are obtained,
i.e., [l0, r0]

a.s.−−→ [l, r] when Nz →∞ for every z ∈ Z.

Proof. By the definition of Eq. (54), for every pair of param-
eter (θ,µ) ∈ Θ, it must be compatible with the dataset v̄,
i.e., P (v̄ | θ,µ) > 0. Let λ = infΘ P (v̄ | θ,µ) > 0. The
posterior distribution over (θ,µ) ∈ Θ given finite samples
v̄ could thus be written as

P (θ,µ ∈ Θ | v̄) = αP (θ,µ ∈ Θ, v̄)

= α

∫
Θ

P (v̄ | θ,µ) ρ(θ)ρ(µ)dθdµ

≥ αλ

∫
Θ

ρ(θ)ρ(µ)dθdµ

≥ αλP (θ,µ ∈ Θ) > 0

where α > 0 is a normalizing constant. Note that parameters
(θ,µ) ∈ Θ fully determine the optimal bound θctf ∈ [l, r].
The above equation implies that

P (θctf ∈ [l, r] | v̄) > 0. (56)

Since the prior ρ has full support over domains of θ,µ, it
follows that the 100% credible interval [l0, r0] given v̄ must
contain the optimal bound [l, r].

We next show that the credible interval [l0, r0] converges
to the optimal bound [l, r] when the sample size Nz →∞
for every z ∈ Z. Let θz denote probabilities of P (Vz)
computed from parameters θ,µ. By the Bayesian law of
large numbers (Grendár & Judge, 2009), we must have,
when the number of samples Nz →∞,∀z ∈ Z,

P (θctf | v̄)
a.s−−→ P (θctf | θ,µ ∈ Θ) (57)

The above equation, together with the definition of optimal
bounds [l, r] in Eq. (2), implies that

P (θctf ∈ [l, r] | v̄) a.s−−→ 1, when Nz →∞,∀z ∈ Z.

That is, the 100% credible interval [l0, r0] converges to the
optimal bound [l, r] as the sample size Nz gets larger for
every intervention do(z) in the collection Z.

Recall that for samples
{
θ(t)
}T
t=1

drawn from P (θctf | v̄),
the empirical estimates for 100(1− α)% credible interval
over θctf are defined as:

l̂α(T ) = θ(⌈(α/2)T⌉), r̂α(T ) = θ(⌈(1−α/2)T⌉), (58)

where θ(⌈(α/2)T⌉), θ(⌈(1−α/2)T⌉) are the ⌈(α/2)T ⌉th small-
est and the ⌈(1− α/2)T ⌉th smallest of

{
θ(t)
}

. One could
apply standard concentration inequalities to determine a suf-
ficient number of draws T required for obtaining accurate
estimates of a 100(1− α)% credible interval.

Lemma 3.3. Fix T > 0 and δ ∈ (0, 1). Let function
f(T, δ) =

√
2T−1 ln (4/δ). With probability at least 1− δ,

estimators l̂α(T ), r̂α(T ) for any α ∈ [0, 1) is bounded by

lα−f(T,δ) ≤ l̂α(T ) ≤ lα+f(T,δ),

rα+f(T,δ) ≤ r̂α(T ) ≤ rα−f(T,δ).
(22)

Proof. Fix ϵ > 0. If l̂α(T ) > lα+ϵ, this means that there

are at most ⌈(α/2)T ⌉ − 1 instances in
{
θ
(t)
ctf

}T

t=1
that are

smaller than or equal to lα+ϵ. That is,

P
(
l̂α(T ) > lα+ϵ

)
≤ P

(
T∑

t=1

1
θ
(t)
ctf ≤lα+ϵ

≤ ⌈(α/2)T ⌉ − 1

)

≤ P

(
T∑

t=1

1
θ
(t)
ctf ≤lα+ϵ

≤ (α/2)T

)

≤ P

(
1

T

T∑
t=1

1
θ
(t)
ctf ≤lα+ϵ

≤ α+ ϵ

2
− ϵ

2

)

≤ exp

(
−Tϵ2

2

)
.
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The last step in the above equation follows from the standard
Hoeffding’s inequality.

If l̂α(T ) < lα−ϵ, this implies that there are at least

⌈(α/2)T ⌉ instances in
{
θ
(t)
ctf

}T

t=1
that are larger than or

equal to lα+ϵ. That is,

P
(
l̂α(T ) < lα−ϵ

)
≤ P

(
T∑

t=1

1
θ
(t)
ctf ≤lα−ϵ

≥ ⌈(α/2)T ⌉

)

≤ P

(
T∑

t=1

1
θ
(t)
ctf ≤lα−ϵ

≥ (α/2)T

)

≤ P

(
1

T

T∑
t=1

1
θ
(t)
ctf ≤lα−ϵ

≥ α− ϵ

2
+

ϵ

2

)

≤ exp

(
−Tϵ2

2

)
.

The last step follows from the standard Hoeffding’s inequal-
ity. Similarly, we could also show that

P
(
ĥα(T ) < hα+ϵ

)
≤ exp

(
−Tϵ2

2

)
,

P
(
ĥα(T ) > hα−ϵ

)
≤ exp

(
−Tϵ2

2

)
.

Finally, bounding the error rate by δ/4 gives:

exp

(
−Tϵ2

2

)
=

δ

4
⇒ ϵ =

√
2T−1 ln(4/δ). (59)

Replacing the error rate ϵ with f(T, δ) =
√
2T−1 ln(4/δ)

completes the proof.

As a corollary, it immediately follows from Lem. 3.3 that
Algorithm CREDIBLEINTERVAL (Alg. 1) is guaranteed to
from a sufficient estimate of 100(1−α)% credible intervals
within the specified margin of errors.

Corollary 3.4. Fix δ ∈ (0, 1) and ϵ > 0. With
probability at least 1 − δ, the interval [l̂, r̂] =
CREDIBLEINTERVAL(α, δ, ϵ) for any α ∈ [0, 1) is bounded
by l̂ ∈ [lα−ϵ, lα+ϵ] and r̂ ∈ [rα+ϵ, rα−ϵ].

Proof. The statement follows immediately from Lem. 3.3
by setting

√
2T−1 ln(4/δ) ≤ ϵ.

C. Simulation Setups and Additional
Experiments

In this section, we will provide details on the simulation
setups and preprocessing of datasets. We also conduct addi-
tional experiments on other more involved causal diagrams

and using skewed hyperparameters for prior distributions.
For all experiments, we will focus on Dirichlet priors in
Eq. (12) with hyperparameters α

(u)
U = αU/dU for some

real αU > 0. This is equivalent to drawing probabilities θu
from a Dirichlet distribution defined as follows:

(θ1, . . . , θdU
) ∼ Dirichlet

(
αU

dU
, · · · , αU

dU

)
, (60)

All experiments were performed on a computer with 32GB
memory, implemented in MATLAB. We are in the process
of migrating the source code to other open-source platforms
(e.g., Julia). We will release them once the code migration
is done and the manuscript is accepted.

Experiment 1: Frontdoor We study the problem of
evaluating interventional probabilities P (yx) from the ob-
servational distribution P (X,Y,W ) in the “Frontdoor”
diagram of Fig. 1c. We collect N = 104 samples
v̄ = {x(n), y(n), w(n)}Nn=1 from an SCM compatible with
Fig. 1c. Detailed parametrization of the SCM is provided in
the following:

U1 ∼ Unif(0, 1),

U2 ∼ Normal(0, 1),

X ∼ Binomial(1, ρX),

W ∼ Binomial(1, ρW ),

Y ∼ Binomial(1, ρY ),

(61)

where probabilities ρX , ρW , ρY are given by

ρX = U1,

ρW =
1

1 + exp(−X − U2)
,

ρY =
1

1 + exp(W − U1)
.

Each observation
(
x(n), y(n), w(n)

)
is an independent draw

from the observational distribution P (X,Y,W ). We set
hyperparameters αU1

= dU1
= 8, αU1

= dU2
= 4.

Experiment 2: PNS We study the problem of evaluat-
ing the counterfactual probability P (yx, y

′
x′) ≡ P (Yx =

y, Yx′ = y′) for any x ̸= x′, y ̸= y′ from the obser-
vational distribution P (X,Y ) in the “Bow” diagram of
Fig. 1d. We collect N = 103 observational samples
v̄ = {x(n), y(n)}Nn=1 from an SCM compatible with Fig. 1d.
Detailed parametrization of the SCM is defined as follows:

U ∼ Normal(0, 1),

X ∼ Binomial(1, ρX),

E ∼ Logistic(0, 1),

Y ← 1X−U+E+0.1>0,

(62)
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where probabilities ρX are given by

ρX =
1

1 + exp(U)
.

Each observation
(
x(n), y(n)

)
is an independent draw from

the observational distribution P (X,Y ). In this experiment,
we set hyperparameters αU = dU = 8.

Experiment 3: IST International Stroke Trials (IST) was
a large, randomized, open trial of up to 14 days of antithrom-
botic therapy after stroke onset (Carolei et al., 1997). The
aim was to provide reliable evidence on the efficacy of as-
pirin and of heparin. The dataset is released under Open
Data Commons Attribution License (ODC-By). In particu-
lar, the treatment X is a pair (i, j) where i = 0 stands for no
aspirin allocation, 1 otherwise; j = 0 stands for no heparin
allocation, 1 for median-dosage, and 2 for high-dosage. The
primary outcome Y ∈ {0, . . . , 3} is the health of the patient
6 months after the treatment, where 0 stands for death, 1 for
being dependent on the family, 2 for the partial recovery,
and 3 for the full recovery.

To emulate the presence of unobserved confounding, we
filter the experimental data with selection rules fX(u), fol-
lowing a procedure introduced in (Zhang & Bareinboim,
2021). More specifically, we are provided with a collection
of IST samples

{
x(n), y(n), u(n)

}N
n=1

where u(n) is the age
of the n-th patient. For each data point

(
x(n), y(n), u(n)

)
,

we check if values of x(n) satisfy the following condition

x(n) = fX (un) =

⌊
6×

(
u(n)

100

)2
⌋
. (63)

If the above condition is satisfied, we keep the data point(
x(n), y(n), u(n)

)
in the dataset; otherwise, the data point

is dropped. After this data selection process is complete,
we hide columns of variables u(n). Doing so allows us
to obtain N = 1 × 103 synthetic observational samples
v̄ =

{
x(n), y(n)

}N
n=1

that are compatible with the “Bow”
diagram in Fig. 1d.

In this experiment, we set hyperparameters αU1
= 10 and

αU2
= 1. As a baseline, we estimate the actual treatment

effect P
(
Yx=(1,0) ≥ 2

)
= 0.3775 for only assigning as-

pirin X = (1, 0) on the recovery of patients Y ≥ 2 from
randomized trial data containing 1.9285× 104 subjects.

Experiment 4: Non-IV We study the problem of eval-
uating counterfactual probabilities P (z, xz′ , yx′) from the
combination of the observational distribution P (X,Y, Z)
and interventional distributions P (Xz, Yz), ∀z ∈ ΩZ , in
the causal diagram of Fig. 1b. We collect N = 103 samples
v̄ = {x(n), y(n), z(n)}Nn=1 from an SCM compatible with

Fig. 1b, which we define as follows:

U1 ∼ Unif(0, 1),

U2 ∼ Unif(0, 1),

Z ← min {⌊15 · U1⌋, 9} ,
X ∼ Binomial(9, ρX),

Y ∼ Binomial(9, ρY ),

(64)

where for any real α ∈ R, the operator ⌊α⌋ denotes the
largest integer n ∈ Z smaller than α, i.e., ⌊α⌋ = min{n ∈
Z | n ≥ α}; probabilities ρX , ρY are given by

ρX =
1

1 + exp(−Z − U2)
,

ρY =
1

1 + exp(X/10− U1 · U2)
.

Each sample
(
x(n), y(n), z(n)

)
is an independent draw from

the observational distribution P (X,Y, Z) or an interven-
tional distribution P (Xz, Yz). To obtain a sample from
P (Xz, Yz), we pick a constant z ∈ ΩZ uniformly at ran-
dom, perform intervention do(Z = z) in the SCM described
in Eq. (64) and observed subsequent outcomes. In this ex-
periment, we set hyperparameters αU1 = 10 and αU2 = 10.

C.1. Additional Simulation Results

We also evaluate our algorithms on various simulated SCM
instances in other more involved causal diagrams. Overall,
we found that simulation results match our findings in the
main manuscript. For identifiable settings (Experiments 5 &
6), our algorithms are able to recover the actual, unknown
counterfactual probabilities. For non-identifiable settings,
our algorithm consistently dominates existing bounding
strategies: it achieves sharp bounds if closed-formed so-
lutions exist (Experiments 7 & 8); otherwise, it improves
over state-of-art bounds (Experiment 9). Finally, for other
more challenging non-identifiable settings where existing
strategies do not apply (Experiment 10), our algorithm is
able to achieve effective bounds over unknown counterfac-
tual probabilities.

Experiment 5: Backdoor Consider the “Backdoor”
graph described in Fig. 5a where X,Y, Z are binary vari-
ables in {0, 1}; U1, U2 ∈ R. In this case, any interven-
tional probability P (Yx = y) is identifiable from the ob-
servational distribution P (X,Z, Y ) through the backdoor
criterion (Pearl, 2000, Def. 3.3.1). We collect N = 104

observational samples v̄ = {x(n), y(n), z(n)}Nn=1 from a
synthetic SCM instance compatible with Fig. 5a. Detailed
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Figure 5: Causal diagrams for additional experiments. Each diagram contains (not exclusively) a treatment X , an outcome
Y , ancestors Z,W , and exogenous variables Ui, i = 1, 2, 3.

parametrization of the SCM is provided in the following:

U1 ∼ Unif(0, 1),

U2 ∼ Unif(0, 1),

Z ∼ Binomial(1, ρZ),

X ∼ Binomial(1, ρX),

Y ∼ Binomial(1, ρY ),

(65)

where probabilities ρZ , ρX , ρY are given by

ρZ = U2,

ρX =
1

1 + exp(−Z − U1)
,

ρY =
1

1 + exp(X + Z + U2 + 1)
.

Each observation
(
x(n), y(n), z(n)

)
is an independent draw

from the observational distribution P (X,Y, Z). In this
experiment, we set hyperparameters αU1

= dU1
= 8,

αU1
= dU2

= 4. Fig. 6a shows samples drawn from the
posterior distribution (P (Yx=0 = 1) | v̄). The analysis re-
veals that these samples collapse to the actual interventional
probability P (Yx=0 = 1) = 0.1401, which confirms the
identifiability of P (Yx = y) in the “backdoor” graph.

Experiment 6: Napkin Graph Consider the “Napkin”
graph in Fig. 5b where X,Y, Z,W are binary variables in
{0, 1}; U1, U2, U3 take values in real R. Interventional prob-
abilities P (yx) is identifiable from P (X,Y, Z,W ) by itera-
tively applying inference rules of “do-calculus” (Pearl, 2000,
Thm. 4.3.1). We collect N = 104 observational samples
v̄ = {x(n), y(n), z(n), w(n)}Nn=1 from an SCM compatible

with Fig. 5b, defined as follows:

Ui ∼ Normal(0, 1), i = 1, 2, 3,

W ∼ Binomial(1, ρW ),

Z ∼ Binomial(1, ρZ),

X ∼ Binomial(1, ρX),

Y ∼ Binomial(1, ρY ),

(66)

where probabilities ρW , ρZ , ρX , ρY are given by:

ρW =
1

1 + exp(U1 − U2)
,

ρZ =
1

1 + exp(W − U3)
,

ρX =
1

1 + exp(−Z − U1)
,

ρY =
1

1 + exp(X − U2 − 0.5)
.

Each observation
(
x(n), y(n), z(n), w(n)

)
is an independent

draw from the observational distribution P (X,Y, Z,W ).

In this experiment, we set hyperparameters αU1 = dU1 =
32, αU2 = dU1 = 32, and αU3 = dU3 = 4. Fig. 6b shows
a histogram containing samples drawn from the posterior
distribution of (P (Yx=0 = 1) | v̄). Our analysis reveals
that these samples converges to the actual interventional
probability P (Yx=0 = 1) = 0.6098, which confirms the
identifiability of P (yx) in the napkin graph.

Experiment 7: IV Consider the “IV” diagram in Fig. 5c
where X,Y, Z are binary variables taking values in {0, 1}.
The non-identifiability of P (Yx = y) from the instrumen-
tal variable Z and the unobserved confounding between
X and Y has been shown in (Bareinboim & Pearl, 2012;
Lee et al., 2019). We study the problem of bounding in-
terventional probabilities P (yx) from the observational dis-
tribution P (X,Y, Z). We collect N = 103 observational
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Figure 6: Histogram plots for samples drawn from the posterior distribution over target counterfactual probabilities. For all
plots (a - f), ci represents our proposed algorithms; θ∗ is the actual counterfactual probability; opt is the optimal asymptotic
bounds (if exists); nb stands for the natural bounds (Manski, 1990).

samples v̄ =
{
x(n), y(n), z(n)

}N
n=1

from a synthetic SCM
compatible with Fig. 5c. Detailed parametrization of the
SCM is provided the following:

U1 ∼ Normal(0, 1),

U2 ∼ Normal(0, 1),

Z ∼ Binomial(1, ρZ),

X ∼ Binomial(1, ρX),

Y ∼ Binomial(1, ρY ),

(67)

where probabilities ρZ , ρX , ρY are given by

ρZ =
1

1 + exp(−U1)
,

ρX =
1

1 + exp(−Z − U2)
,

ρY =
1

1 + exp(X − U2 + 0.5)
.

(Balke & Pearl, 1997) introduced a closed-form bound over
P (yx) from the observational distribution P (X,Y, Z) for
the “IV” diagram with binary X,Y, Z ∈ {0, 1}, which is
provably optimal (labeled as opt). To obtain a 100% cred-
ible intervals, we apply the collapsed Gibbs sampler with
hyperparameters αU1

= dU1
= 2 and αU2

= dU1
= 16.

Fig. 6c shows samples drawn from the posterior distribu-
tion of (P (Yx=0 = 1) | v̄). The analysis reveals that our

algorithm derives a valid bound over the actual probabil-
ity P (Yx=0 = 1) = 0.3954; the 100% credible interval
converges to the optimal IV bound l = 0.1980, r = 0.6258.

Experiment 8: Double Bow Consider the “Double Bow”
diagram in Fig. 5d where X,Y, Z ∈ {0, 1} and U1, U2 ∈
R. We study the problem of evaluating interventional
probabilities P (yx) from the observational distribution
P (X,Y, Z). We collect N = 103 observational samples
v̄ = {x(n), y(n), z(n)}Nn=1 from an SCM compatible with
Fig. 5d, defined as the following:

Ui ∼ Normal(0, 1), i = 1, 2,

Z ∼ Binomial(1, ρZ),

X ∼ Binomial(1, ρX),

Y ∼ Binomial(1, ρY ),

(68)

where probabilities ρZ , ρX , ρY are given by:

ρZ =
1

1 + exp(−U1)
,

ρX =
1

1 + exp(−Z − U1 − U2)
,

ρY =
1

1 + exp(X − U2 + 0.5)
.
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Figure 7: Prior distributions for (a, b) Experiment 9 and (c, d) Experiment 10.

(Balke & Pearl, 1997) introduced a closed-form bound over
P (yx) from the observational distribution P (X,Y, Z) for
the “IV” diagram in Fig. 5c with binary X,Y, Z ∈ {0, 1}.
It is verifiable that such a bound is also applicable in the
“Double-bow” diagram of Fig. 5d with binary endogenous
domains, and is provably optimal (labeled as opt). To obtain
a 100% credible intervals, we apply the collapsed Gibbs
sampler with hyperparameters αU1

= dU1
= 32 and αU2

=
dU1

= 32. Fig. 6d shows samples drawn from the posterior
distribution of (P (Yx=0 = 1) | v̄). The analysis reveals
that our algorithm derives a valid bound over the actual
probability P (Yx=0 = 1) = 0.3954; the 100% credible
interval converges to the optimal IV bound l = 0.1980, r =
0.6258, confirming the efficacy of the proposed approach.

Experiment 9: M+BD Graph Consider the “M+BD”
graph in Fig. 5e where X,Y, Z ∈ {0, 1} and U1, U2 ∈
R. In this case, interventional probabilities P (yx) are non-
identifiable from the observational distribution P (X,Y, Z)
due to the presence of the collider path X ← U1 → Z ←
U2 → Y . We collect N = 103 observational samples
v̄ = {x(n), y(n), z(n)}Nn=1 from an SCM compatible with
Fig. 5e. Detailed parametrization of the SCM is given by:

Ui ∼ Normal(0, 1), i = 1, 2,

Z ∼ Binomial(1, ρZ),

X ∼ Binomial(1, ρX),

Y ∼ Binomial(1, ρY ),

(69)

where probabilities ρZ , ρX , ρY are given by:

ρZ =
1

1 + exp(−U1)
,

ρX =
1

1 + exp(−Z − U1 − U2)
,

ρY =
1

1 + exp(X − Z − U2)
.

Each observation
(
x(n), y(n), z(n)

)
is an independent draw

from the observational distribution P (X,Y, Z).

In this experiment, we set hyperparameters αU1
= dU1

=
32 and αU2 = dU1 = 32. Fig. 6e shows samples drawn
from the posterior distribution of (P (Yx=0 = 1) | v̄). As

a baseline, we also include the natural bounds introduced
in (Robins, 1989; Manski, 1990) (nb). The analysis reveals
that all algorithms achieve bounds that contain the actual,
target causal effect P (Yx=0 = 1) = 0.5910. Our algorithm
obtains a 100% credible interval lci = 0.4884, rci = 0.6519,
which improves over the existing bounding strategy (lnb =
0.2230, rnb = 0.8296).

Experiment 10: Triple Bow Consider the “Triple
Bow” diagram in Fig. 5f where X,Y, Z ∈ {0, 1} and
U1, U2, U3 ∈ R. We are interested in evaluating the counter-
factual probability P (Yx=1 = 1, Yx=0 = 0) from the com-
bination of the observational distribution P (X,Y, Z,W )
and interventional distributions P (Xz, Yz,Wz). To our
best knowledge, existing bounding strategies are not ap-
plicable to this setting. We collect N = 103 samples
v̄ = {x(n), y(n), z(n), w(n)}Nn=1 from an SCM compati-
ble Fig. 5f. The detailed parametrization of the SCM is
provided in the following:

U1 ∼ Unif(0, 1),

Ui ∼ Normal(0, 1), i = 2, 3,

Z ∼ ⌊1.5 · U1⌋,
W ∼ Binomial(1, ρW ),

X ∼ Binomial(1, ρX),

E ∼ Logistic(0, 1),

Y ← 1X−U3+E+0.1>0,

(70)

where probabilities ρZ , ρW , ρX are given by:

ρZ =
1

1 + exp(−U1)
,

ρW =
1

1 + exp(−Z − U1 − U2)
,

ρX =
1

1 + exp(−W − U2 − U3)
.

Each sample
(
x(n), y(n), z(n), w(n)

)
is an independent draw

from the observational distribution P (X,Y, Z,W ) or an
interventional distribution P (Xz, Yz,Wz). To obtain a sam-
ple from P (xz, yz, wz), we pick a constant z ∈ ΩZ uni-
formly at random, perform intervention do(Z = z) in the
SCM in Eq. (70) and observed subsequent outcomes.
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(a) N = 10 (b) N = 102 (c) N = 103 (d) N = 104

(e) N = 10 (f) N = 102 (g) N = 103 (h) N = 104

Figure 8: Histogram plots for samples drawn from the posterior distribution over probability P (Yx=0 = 0) in “Frontdoor”
graph of Fig. 1c using two priors. (a - d) shows the posteriors using the flat prior and observational data of size N =
10, 102, 103 and 104 respectively; (e - h) shows the posetriors using the skewed prior and the same observational datasets.

In this experiment, we set hyperparameters αU1
= dU1

=
32 and αU2 = dU1 = 32. Fig. 6f shows samples drawn from
the posterior distribution of (P (Yx=0 = 1) | v̄). The anal-
ysis reveals that our proposed approach is able to achived
an effective bound that contain the actual counterfactual
probability P (Yx=1 = 1, Yx=0 = 0) = 0.1867. The 100%
credible interval (ci) is equal to l = 0.1150, r = 0.3686.

C.2. The Effect of Sample Size and Prior Distributions

We will evaluate our algorithms using skewed prior distri-
butions. We found that increasing the size of observational
samples was able to wash away the bias introduced by prior
distributions. That is, despite the influence of prior distribu-
tions, our algorithms eventually converge to sharp bounds
over unknown counterfactual probabilities as the number of
observational sample grows (to infinite).

Experiment 11: Frontdoor Consider first the “Front-
door” graph in Fig. 1d where interventional probabilities
P (yx) is identifiable from the observational distribution
P (X,Y,W ). The detailed parametrization of the underly-
ing SCM is described in Eq. (61). We present our results
using two different priors. The first is a flat (uniform) dis-
tribution over probabilities of U1 and U2 respectively, i.e.,
αU1

= dU1
= 8 and αU1

= dU2
= 4. The second is skewed

to present a strong preference on the deterministic relation-
ships between X and Y ; in this case, α1 = 300 × dUi ,
i = 1, 2, for prior distributions associated with both U1

and U2. Figs. 7a and 7b shows the distribution of P (Yx=0)
induced by these two priors (in the absence of any observa-
tional data). We see that the skewed prior of Fig. 7b assigns
almost all weights to deterministic events P (Yx=0 = 1) = 1
or P (Yx=0 = 0) = 1.

Fig. 5 shows posterior samples obtained by our Gibbs sam-
pler when applied to observational data of various sizes,
using both the flat prior (Figs. 8a to 8d) and the skewed
prior (Figs. 8e to 8h). Both priors eventually collapse to the
actual, unknown probability P (Yx=0 = 1) = 0.5085. As
expected, more observational data are needed for the skewed
prior before the posterior distribution converges, since the
skewed prior is concentrated further away from the value
0.5085 than the uniform prior.

Experiment 12: IV Consider the “IV” diagram in Fig. 1a
where X,Y, Z are binary variables taking values in {0, 1}.
Detailed parametrization of the underlying SCM is de-
scribed in Eq. (67). We present our results using two dif-
ferent priors. The first is a flat (uniform) distribution over
probabilities of U1 and U2 respectively, i.e., αU1

= dU1
= 2

and αU1
= dU2

= 16. The second is skewed to present a
strong preference on the deterministic relationships between
X and Y ; in this case, α1 = 300 × dUi , i = 1, 2, for
prior distributions associated with both U1 and U2. Figs. 7c
and 7d shows distributions of P (Yx=0) induced by these
two prior distributions (in the absence of any observational
data). We see that the skewed prior of Fig. 7d assigns almost
all weights to deterministic events P (Yx=0 = 1) = 1 or
P (Yx=0 = 0) = 1.

Fig. 9 shows posterior samples obtained by our Gibbs sam-
pler when applied to observational data of various sizes,
using both the flat prior (Figs. 9a to 9d) and the skewed prior
(Figs. 9e to 9h). Our analysis reveals that 100% credible
intervals of both priors eventually converge to the sharp IV
bound l = 0.1468, r = 0.6617 over the unknown interven-
tional probability P (Yx=0 = 1) = 0.3954. It is interesting
to note that, in this experiment, while the choice of prior
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Figure 9: Histogram plots for samples drawn from the posterior distribution over probability P (Yx=0 = 0) in “IV” graph of
Fig. 1a using two priors. (a - d) shows the posteriors using the flat prior and observational data of size N = 10, 102, 103 and
104 respectively; (e - h) shows the posteriors using the skewed prior and the same respective observational datasets.

distribution does not influence the final bound, it still has
an effect on the shape of posterior distributions given finite
samples of the observational data.

D. Polynomial Optimization for Bounding
Counterfactual Probabilities

In this section, we will demonstrate through examples how
to translate the optimization problem in Eq. (9) into equiva-
lent polynomial programs in various causal diagrams.

Example 1: IV Consider the “IV” diagram G in Fig. 1a.
We study the problem of bounding counterfactual probabil-
ities P (y′x′ , x, y) ≡ P (Yx′ = y′, X = x, Y = y) from the
observational distribution P (X,Y, Z). Formally, let M (G)
denote the set of all SCMs compatible with the diagram
G. One could obtain the tight bound over P (y′x′ , x, y) from
P (X,Y, Z) by solving the optimization problem as follows:

min /max
M∈M (G)

PM (y′x′ , x, y)

s.t. PM (x, y, z) = P (x, y, z), ∀x, y, z.
(71)

In the above optimization problem, it follows from Thm. 2.4
that the objective function could be written as

PM (y′x′ , x, y)

=

d1∑
u1=1

d2∑
u2=1

µ
(x′,u2)
y′ µ(x,u2)

y

∑
z

µ(z,u2)
x µ(u1)

z θu1
θu2

.

Similarly, the observational constraints could be written as:

PM (x, y, z) =

d1∑
u1=1

d2∑
u2=1

µ(u1)
z µ(z,u2)

x µ(x,u2)
y θu1

θu2
.

The above equations imply that Eq. (71) could be reducible
to an equivalent polynomial program as follows:

min /max

d1∑
u1=1

d2∑
u2=1

µ
(x′,u2)
y′ µ(x,u2)

y

∑
z

µ(z,u2)
x µ(u1)

z θu1
θu2

subject to
d1∑

u1=1

d2∑
u2=1

µ(u1)
z µ(z,u2)

x µ(x,u2)
y θu1

θu2

= P (x, y, z), ∀x, y, z

∀z, u1, µ(u1)
z

(
1− µ(u1)

z

)
= 0,

∑
z

µ(u1)
z = 1

∀x, z, u2, µ(z,u2)
x

(
1− µ(z,u2)

x

)
= 0

∀x, z, u2,
∑
x

µ(z,u2)
x = 1

∀y, x, u2, µ(x,u2)
y

(
1− µ(x,u2)

y

)
= 0

∀y, x, u2

∑
y

µ(x,u2)
y = 1

∀u1, 0 ≤ θu1
≤ 1,

∑
u1

θu1
= 1

∀u2, 0 ≤ θu2
≤ 1,

∑
u2

θu2
= 1

where cardinalities d1, d2 are equal to

d1 = |ΩZ | , d2 = |ΩZ 7→ ΩX | × |ΩX 7→ ΩY | .

Example 2 Consider the causal diagram in Fig. 1b. We
study the problem of bounding counterfactual probabili-
ties P (z, xz′ , yx′) from a combination of the observational
distribution P (X,Y, Z) and the interventional distribution
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{P (Xz, Yz) | ∀z ∈ ΩZ}. That is,

min /max
M∈M (G)

PM (z, xz′ , yx′)

s.t. PM (x, y, z) = P (x, y, z), ∀x, y, z
PM (xz, yz) = P (xz, yz), ∀x, y, z

(72)

Among quantities in the above equation, it follows from
Thm. 2.4 that the objective function could be written as

PM (z, xz′ , yx′)

=

d∑
u1,u2=1

µ(u1)
z µ(z′,u2)

x µ(x′,u1,u2)
y θu1θu2 .

Similarly, the observational constraints could be written as:

PM (x, y, z) =

d∑
u1,u2=1

µ(u1)
z µ(z,u2)

x µ(x,u1,u2)
y θu1

θu2
,

and the interventional constraints imply:

PM (xz, yz) =

d∑
u1,u2=1

µ(z,u2)
x µ(x,u1,u2)

y θu1θu2 .

The above equations imply that one could obtain an optimal
bound over P (z, xz′ , yx′) given by Eq. (72) by solving an
equivalent polynomial program as follows:

min /max

d∑
u1,u2=1

µ(u1)
z µ(z′,u2)

x µ(x′,u1,u2)
y θu1

θu2

s.t.
d∑

u1,u2=1

µ(u1)
z µ(z,u2)

x µ(x,u1,u2)
y θu1θu2

= P (x, y, z), ∀x, y, z
d∑

u1,u2=1

µ(z,u2)
x µ(x,u1,u2)

y θu1θu2

= P (xz, yz), ∀x, y, z

∀z, u1, µ(u1)
z

(
1− µ(u1)

z

)
= 0

∀z, u1,
∑
z

µ(u1)
z = 1

∀x, z, u1, u2, µ(z,u1,u2)
x

(
1− µ(z,u1,u2)

x

)
= 0

∀x, z, u1, u2,
∑
x

µ(z,u1,u2)
x = 1

∀y, x, u2, µ(x,u2)
y

(
1− µ(x,u2)

y

)
= 0

∀y, x, u2,
∑
y

µ(x,u2)
y = 1

∀u1, 0 ≤ θu1
≤ 1,

∑
u1

θu1
= 1

∀u2, 0 ≤ θu2 ≤ 1,
∑
u2

θu2 = 1

where the cardinality d equates to

d = |ΩZ | × |ΩZ 7→ ΩX | × |ΩX 7→ ΩY | .

Example 3: Frontdoor Consider the “Frontdoor” dia-
gram in Fig. 1c. We are interested in evaluating interven-
tional probabilities P (yx) from the observational distribu-
tion P (X,Y,W ). That is,

min /max
M∈M (G)

PM (yx)

s.t. PM (x, y, w) = P (x, y, w), ∀x, y, w
(73)

It follows from Thm. 2.4 that the objective function in the
above optimization problem could be further written as

PM (yx) =

d1∑
u1=1

d2∑
u1=1

∑
w

µ(w,u1)
y µ(x,u2)

w θu1
θu2

.

Similarly, the observational constraints could be written as:

PM (x, y, w) =

d1∑
u1=1

d2∑
u1=1

µ(u)
x µ(w,u1)

y µ(x,u2)
w θu1θu2 .

The above equations imply that one could obtain the optimal
solution in Eq. (73) by solving an equivalent polynomial
optimization problem defined as follows:

min /max

d1∑
u1=1

d2∑
u1=1

∑
w

µ(w,u1)
y µ(x,u2)

w θu1
θu2

subject to
d1∑

u1=1

d2∑
u1=1

µ(u)
x µ(w,u1)

y µ(x,u2)
w θu1

θu2

= P (x, y, w),∀x, y, w

∀x, u1, µ(u)
x

(
1− µ(u)

x

)
= 0,

∀x, u1,
∑
x

µ(u)
x = 1,

∀y, w, u1, µ(w,u1)
y

(
1− µ(w,u1)

y

)
= 0,

∀y, w, u1,
∑
y

µ(w,u1)
y = 1,

∀w, x, u2, µ(x,u2)
w

(
1− µ(x,uw)

w

)
= 0,

∀w, x, u2,
∑
w

µ(x,uw)
w = 1,

∀u1, 0 ≤ θu1
≤ 1,

∑
u1

θu1
= 1,

∀u2, 0 ≤ θu2 ≤ 1,
∑
u2

θu2 = 1,

where cardinalities d1, d2 equate to

d1 = |ΩX | × |ΩW 7→ ΩY | , d2 = |ΩX 7→ ΩW | .
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Example 4: Bow Consider the “Bow” diagram in Fig. 1d.
We study the problem of bounding counterfactual probabil-
ities P (yx, y

′
x′) ≡ P (Yx = y, Yx=x′ = y′) from a combi-

nation of the observational distribution P (X,Y, Z) and the
interventional distribution {P (Yx) | ∀x ∈ ΩX}, i.e.,

min /max
M∈M (G)

PM (yx, y
′
x′)

s.t. PM (x, y) = P (x, y), ∀x, y
PM (yx) = P (yx), ∀x, y

(74)

Among quantities in the above equation, it follows from
Thm. 2.4 that the objective function could be written as

PM (yx, y
′
x′) =

d∑
u=1

µ(x,u)
y µ

(x′,u)
y′ θu.

Similarly, observational and interventional constraints could
be written as the following, respectively,

PM (x, y) =

d∑
u=1

µ(u)
x µ(x,u)

y θu, PM (yx) =

d∑
u=1

µ(x,u)
y θu.

The optimization problem defined in Eq. (74) is thus re-
ducible to an equivalent polynomial program as follows:

min /max

d∑
u=1

µ(x,u)
y µ

(x′,u)
y′ θu

subject to
d∑

u=1

µ(u)
x µ(x,u)

y θu = P (x, y), ∀x, y

d∑
u=1

µ(x,u)
y θu = P (yx), ∀x, y

∀x, u, µ(u)
x

(
1− µ(u)

x

)
= 0

∀x, u,
∑
x

µ(u)
x = 1

∀y, x, u, µ(x,u)
y

(
1− µ(x,u)

y

)
= 0

∀y, x, u,
∑
y

µ(x,u)
y = 1

∀u, 0 ≤ θu ≤ 1,
∑
u

θu = 1

where the cardinality d is equal to |ΩZ 7→ ΩX |.

E. A Generalization of (Balke & Pearl, 1994)
In this section, we will describe a naı̈ve generalization of
the discretization procedure introduced in (Balke & Pearl,
1994) to the causal diagram of Fig. 10a. In particular, given
any SCM M compatible with Fig. 10a, we will construct a
discrete SCM N compatible with a different causal diagram

Z X Y

U1 U2

(a)

Z X Y

U

(b)

Figure 10: Causal diagrams (a-b) containing a treatment X ,
an outcome Y , an ancestor Z, and unobserved Us.

described in Fig. 10b such that M and N coincide in all
counterfactual distributions P (Yx, . . . ,Zw).

We first introduce some useful notations. Let fZ , fX , fY
denote functions associated with Z,X, Y in SCM M . Let
constants h

(1)
Z = 0 and h

(2)
Z = 1. Note that given any

U1 = u1, fZ(u1) must equate to a binary value in {0, 1}.
Therefore, we could define a partition U (i)

Z , i = 1, 2, over
domains of U1 such that u1 ∈ U (i)

Z if and only if

fZ(u1) = h
(i)
Z . (75)

Given any u2, fX(·, u2) defines a function mapping from
domains of Z to X . Let functions in the hypothesis class
ΩZ 7→ ΩX be ordered by

h
(1)
X (z) = 0, h

(2)
X (z) = z,

h
(3)
X (z) = ¬z, h

(4)
X (z) = 1.

(76)

Similarly, we could define a partition U (i)
X , i = 1, 2, 3, 4

over the domain ΩU2
such that u2 ∈ U (i)

X if and only if the
induced function fX(·, u2) = h

(i)
X . Finally, let functions in

ΩX 7→ ΩY be ordered by

h
(1)
Y (x) = 0, h

(2)
Y (x) = x,

h
(3)
Y (x) = ¬x, h

(4)
Y (x) = 1.

(77)

For any u1, u2, the induced function fY (·, u1, u2) must co-
incide with only of the above elements in the hypothesis
class ΩX 7→ ΩY . Let U (i)

Y , i = 1, 2, 3, 4 be a subset of
the product domain ΩU1 × ΩU2 such that (u1, u2) ∈ U (i)

Y

if any only if fY (·, u1, u2) = h
(i)
Y . It is verifiable that

U (i)
Y , i = 1, 2, 3, 4 must form a partition over ΩU1 × ΩU2 .

We now construct a discrete SCM N compatible with the
causal diagram of Fig. 10b. Let the exogenous variable U
in N be a tuple (UZ , UX , UY ), where UZ ∈ {1, 2}, UX ∈
{1, 2, 3, 4} and UY ∈ {1, 2, 3, 4}. For any uZ , values of Z
are decided by a function as follows:

z ← fZ(uz) = h
(uZ)
Z , (78)

where h(1)
Z = 0 and h

(2)
Z = 1. Given any input z, uX , values

of X are given by

x← fX(z, uX) = h
(uX)
X (z), (79)
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(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 11: Simulation results for the experiment in (Silva & Evans, 2016, Section 4.4). For all plots (a - c), ci represents our
proposed algorithm; θ∗ is the actual ACE; and iv stands for the optimal IV bounds (Balke & Pearl, 1997).

where h
(i)
X (z), i = 1, 2, 3, 4, are defined in Eq. (76). Simi-

larly, given any x, uY , values of Y are given by

y ← fY (x, uY ) = h
(uY )
Y (x), (80)

where h
(i)
Y (x), i = 1, 2, 3, 4, are functions defined in

Eq. (77). Finally, we define the exogenous distribution
P (uZ , uX , uY ) in the discrete SCM N as the joint probabil-
ity over partitions U (i)

Z ,U (j)
X ,U (k)

Y , i = 1, 2, j = 1, 2, 3, 4,
k = 1, 2, 3, 4. That is,

PN (UZ = i, UX = j, UY = k)

= PM

(
(U1, U2) ∈ U (i)

Z ∧ U
(j)
X ∧ U (k)

Y

)
.

(81)

It follows from the decomposition in Lem. A.4 that N and
M must coincide in all counterfactual distributions over
binary X,Y, Z. The total cardinality of the exogenous do-
mains in N is |ΩUZ

| × |ΩUX
| × |ΩUY

| = 2× 4× 4 = 32.

However, the construction for the reverse direction does not
hold true. That is, given an arbitrary discrete N compatible
with the causal diagram in Fig. 10b, one may not be able to
construct an SCM M compatible with the causal diagram in
Fig. 10a such that M and N coincide in all counterfactual
distributions. To witness, consider a discrete SCM N where
P (UZ = UX) = 1, i.e., variables UZ and UX are always
the same, taking values in {1, 2}. Since in SCM N , values
of Z(uZ) and Xz=1(uX) are given by

Z(uZ) = h
(uZ)
Z = 0× 1uZ=1 + 1× 1uZ=2,

Xz=1(uX) = h
(uX)
X (1) = 0× 1uX=1 + 1× 1uX=2.

This means that values of counterfactual variables Z and
Xz=0 must always coincide, i.e., P (Z = Xx=1) = 1. How-
ever, for any SCM M compatible with Fig. 10a, counter-
factual variables Z and Xz must be independent due to
the independence restriction (Pearl, 2000, Ch. 7.3.2), i.e.,
Z ⊥⊥ Xz , which is a contradiction.

F. Comparison with (Silva & Evans, 2016)
(Silva & Evans, 2016) argued against the Bayesian ap-
proach for inferring about unknown counterfactual prob-
abilities even when correct cardinalities of exogenous do-
mains are known. More specifically, the authors con-
sider the “IV” diagram in Fig. 1a with binary variables
X,Y, Z ∈ {0, 1}. The goal is to bound the average causal
effect ACE = E[YX=1]− E[YX=0] from the observational
distribution P (X,Y, Z). The authors assigned a few differ-
ent choices of Dirichlet priors over the exogenous distribu-
tion P (U). Simulation results, shown in (Silva & Evans,
2016, Figure 3), found that “the posterior over the ACE
covers a much narrower area than” the optimal IV bound in
(Balke & Pearl, 1997), “and its behavior is erratic”.

First, we would like to point out that there is a critical dif-
ference between our proposed Bayesian approach and the
one discussed in (Silva & Evans, 2016). Our algorithm does
not simply “put priors on the latent variable model to get a
point estimate, such as the posterior expected value of the
ACE.”. Indeed, we are aware that when the counterfactual
probability (e.g., ACE) is not identifiable in the causal di-
agram, the posterior expected value does not necessarily
encode any true knowledge about the underlying model.
Overall, it is infeasible to obtain an accurate point-estimate
of a non-identifiable counterfactual probability from the ob-
servational data, regardless of how sophisticated the prior
distributions are.

Therefore, our algorithm focuses on deriving the support of
the posterior distribution, which is a 100% credible interval
containing all possible values of the target counterfactual
probability. It has been shown in (Chickering & Pearl, 1997;
Imbens & Rubin, 1997) that the credible interval of the
posterior distribution could effectively approximate the IV
bounds in (Balke & Pearl, 1997).

Nevertheless, we notice that the supports of the posterior
distributions in Figures 3(a-c) in (Silva & Evans, 2016) do
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not match the IV bound. We believe this is primarily due to
implementations of Gibbs samplers rather than the technical-
ity of the credible interval approach. For instance, the Gibbs
sampler of (Chickering & Pearl, 1997) tends to get stuck
in the local optima, thus failing to travel the full support of
the posterior distribution. There are several ways to address
this issue in practice. For example, one could run multiple
Monte Carlo Markov Chains (MCMCs) with random initial-
ization. Another approach is to use priors that concentrate
more on the boundary of the domains of the target ACE. We
could observe this phenomenon by comparing Figures 3(a)
and 3(c) in (Silva & Evans, 2016), where the flat prior in
Figure 3(a) achieves better approximation to the IV bound
compared to the narrow prior in Figure 3(c).

Finally, we also implement the simulation in Figures 3(a-c)
of (Silva & Evans, 2016) using our proposed Gibbs sampler.
We randomly draw an IV model following the procedure
described in (Silva & Evans, 2016, Section 4.4), generate
the observational data, and compute the IV bound in (Balke
& Pearl, 1997). We generate the posterior distributions us-
ing Dirhchlet distributions Dir(α) with hyperparameters
α = 0.1, 1, 10, respectively. We show the updated simula-
tion results in Fig. 11. Our analysis reveals that all three
priors could effectively approximate the optimal IV bound.
The shape of posterior distributions may vary based on the
hyperparameter α. However, the support of posterior distri-
butions remains invariant, matching the optimal IV bound.
This confirms the efficacy of our proposed approach.


