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Abstract

Recent advances in Reinforcement Learning have allowed automated agents (for short,
agents) to achieve a high level of performance across a wide range of tasks, which when
supplemented with human feedback has led to faster and more robust decision-making. The
current literature, in large part, focuses on the human’s role during the learning phase: hu-
man trainers possess a priori knowledge that could help an agent to accelerate its learning
when the environment is not fully known. In this paper, we study an interactive reinforce-
ment learning setting where the agent and the human have different sensory capabilities,
disagreeing, therefore, on how they perceive the world (observed states) while sharing the
same reward and transition functions. We show that agents are bound to learn sub-optimal
policies if they do not take into account human advice, perhaps surprisingly, even when
human’s decisions are less accurate than their own. We propose the counterfactual agent
who proactively considers the intended actions of the human operator, and proves that this
strategy dominates standard approaches regarding performance. Finally, we formulate a
novel reinforcement learning task maximizing the performance of an autonomous system
subject to a budget constraint over the available amount of human advice.

Keywords: Causal inference, Graphical models, Reinforcement learning

1. Introduction

Sequential decision-making plays a central role in the design of modern intelligent systems.
In a prototypical setting, for example, an agent is deployed in an unknown environment and
needs to learn how to act such that a set of non-trivial goals are achieved. A solution in these
settings usually comes in the form of a policy, namely, a function mapping from the agent’s
past observations (e.g., visited states, realized outcomes) to actions it should execute at each
instant. Human experts might be able to specify a policy in advance for simple tasks, but
the policy usually needs to be learned from experimentation in most complex, real-world
scenarios. Reinforcement learning (RL) (Sutton and Barto, 1998) has emerged as the de
facto framework to solve this problem, allowing agents to learn optimal policies by using
through interactions with the environment, ideally, without explicit human instructions.
One of the major challenges when applying RL methods in practice is the substantial
amount of time and data required to find a reasonable, hopefully optimal, policy.

Many efforts have been made to accelerate the learning process by allowing agents to
learn by interacting with human trainers. One such approach is to learn from humans past
behaviors, which includes learning from demonstration (Atkeson and Schaal, 1997; Chernova
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and Veloso, 2007; Argall et al., 2009; Hussein et al., 2017; Zhang and Bareinboim, 2017) and
inverse reinforcement learning Ng and Russell (2000); Abbeel and Ng (2004). In general,
these techniques learn a policy by taking as input observations of a human performing a task.
Another approach that has shown promise is known as interactive reinforcement learning,
where the agent is provided in real time with a series of critiques from (possibly non-expert)
humans (Knox and Stone, 2009, 2012; Mandel et al., 2017). Techniques developed under
this rubric include reward shaping (Skinner, 1990; Randløv and Alstrøm, 1998; Ng et al.,
1999; Devlin and Kudenko, 2012), policy shaping (Griffith et al., 2013; Loftin et al., 2014,
2016) and student-teacher training (Clouse, 1996; Torrey and Taylor, 2013).

This body of the literature concerned with incorporating the “human in the loop” focuses
on the role of human instructors in the learning phase of the system. By and large, the
challenge is that an agent has an incomplete model of the environment (e.g., unknown reward
functions or system dynamics), which can be improved by human trainers who possess a
more detailed understanding about the environment and the task at hand. The translation
of the trainer’s knowledge into insights for the agent would then allow a more aggressive
pruning of the search space, naturally, leading to accelerated learning rates. This approach
suggests that after serving as a data source for learning the model, human subjects have no
additional value and, therefore, can be disposed of, i.e., moved “out of the loop.”

In this paper, we explore a novel aspect of the role of human instructors in RL, specifi-
cally after the automated agent learns a model of the environment.1 We show, by a simple
example, that when the agent and the human have different perceptual capabilities (ob-
served states), while sharing the same reward and transition functions, the agent could still
be constrained to sub-optimal policies if it does not consider the human’s instructions (re-
gardless of the number of interactions allowed, number of demonstrations, etc). Most closely
related to our work, (Wray et al., 2016) considered a planning problem where the human
and agent repeatedly transfer the control of the decisions, thus reaching a performance level
not achievable by the standard autonomous approaches. This paper explicitly accounts for
capabilities of the human and agent using the language of causality (Pearl, 2000; Lee and
Bareinboim, 2018, 2019; Zhang and Bareinboim, 2019, 2020b; Zhang et al., 2020; Kumor
et al., 2021). This allows us to delineate a large number of instances where simple solutions
are available, yet overlooked in previous work. More specifically, our contributions are:

1. We demonstrate the conditions under which human input can provide valuable in-
formation for agents to achieve optimal performance, even when the model of the
environment is fully known.

2. We define the counterfactual agent and identify a class of environments where it can
be efficiently optimized using standard MDP algorithms (albeit with changes).

3. We formulate a novel RL problem subject to a budget constraint of available human
advice, which is reducible to a constrained MDP. The optimal policy, in this case, is
computable as a solution of a polynomial program.

Given the space constraints, all proofs are provided in the complete technical report (Zhang
and Bareinboim, 2020a)

1. The problem considered here will appear compounded when the agent is also learning system dynamics.

2



Can Humans Be out of the Loop?

1.1. Preliminaries

We introduce in this section the basic notations and definitions used throughout the paper.
Variables are denoted by capital letters (e.g., X), and their values by lowercase letters (x).
Let X denote the domain of a variable X. Let v([i,j]) stand for a sequence of variables
(v(i), v(i+1), . . . , v(j)) (empty if j < i), and V ([i,j]) = v([i,j]) for a sequence of assignments

V (i) = v(i), V (i+1) = v(i+1), . . . , V (j) = v(j). We will consistently use the abbreviation P (x)
for the probabilities P (X = x),∀x ∈ D(X), so does P (y∣x) = P (Y = y∣X = x). This paper
deals extensively with finite (PO)MDPs models as the basis for designing RL algorithms.

Definition 1 (Partially Observed MDP) A finite POMDP (Cassandra et al., 1994) is
a 6-tuple ⟨S,X ,O, T,R,Ω⟩ in which S is a finite set of states; X a finite set of actions; O is
a finite set of observations; T ∶ S × X × S → [0,1] is a transition distribution; R ∶ S × X → R
is a reward function; and Ω ∶ S × O → [0,1] is an observation function.

Formally, if states are fully observed (i.e., O = S and Ω(s, x, s) = 1), the 4-tuple ⟨S,X , T,R⟩
forms an MDP. For simplicity, let T s

x(s′) = T (s, x, s′), Rs
x = R(s, x) and Ωs(o) = Ω(s, o).

2. The Value of Human Advice

We start the discussion with an example involving the sequential decision-making of pa-
tients’ treatment. We show that an agent with the fully specified system dynamics could
fail to find an effective policy if it ignores the advice of the human instructor.

Figure 1: Simulations comparing experimen-
tal and counterfactual agents.

Specifically, a physician treats each pa-
tient who visits the hospital regularly to
maintain her long term health condition.
This sequential environment can be repre-
sented by an MDP Mmdpuc described in
Fig. 2(a); here, UC stands for unobserved
confounders. More specifically, the physi-
cian measures the patient’s corticosteroid
level at the t-th visit, S(t) = s(t) ∈ {0,1},
where 0 stands for a low and 1 for a high
level of corticosteroid. She then decides a treatment X(t) = x′(t) ∈ {0,1} (1 for to give the
drug, 0 for not to), and then measures an overall health score Y (t) = y(t) ∈ {0,1} (i.e., 1
for “healthy” and 0 for “not healthy”). In reality, the patient’s health score Y (t) is also
affected by a pair of variables U (t) = {M (t),E(t)}, where M (t) = m(t) stands for patient’s
psychological status (0 for a positive mood, 1 for negative) and E(t) = e(t) stands for her
socioeconomic status (0 for wealthy, 1 for poor). The patient’s long-term health condition
can be modeled by the long-term cumulative reward ∑∞t=1 γtY (t), γ = 0.99 The physician
decides a treatment X(t) = x′(t) based on values of S(t),M (t),E(t), which we summarize as
a policy function x′(t) = πh (s(t),m(t), e(t)). The detailed parametrizations of the transition
function T , the reward function R, and the policy πh are described in Appendix A.

To maximize the patient’s long-term health, the hospital’s administration aims to auto-
mate the decision procedure and deploy an autonomous agent Aexp. The agent learns the
fully specified model (functions T and R) from the physician, but it doesn’t have access
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(a) MDPUC (b) DSCM (c) MDPUC+

Figure 2: Causal diagrams for different environmental models: (a) MDPUC where U (t)

affects only {X(t), Y (t), S(t+1)}; (b) a general DSCM (Thm. 2); (c) MDPUC+

where U (t) = {U t1, U t2} affects {X(t), Y (t), S(t+1)}, and also S(t).

to the psychological mood M (t) and the socioeconomic status E(t) of the patient due to
privacy concerns. That is, M (t),E(t) are unobserved variables for the learning agent. We
solve for this system using both the standard MDP and POMDP planning algorithms and
label the resulting policies as exp and exp2, respectively. The administration also considers
a simple agent (Actf), which observes the corticosteroid level S(t) and also take the physi-
cian’s decision as advice in real-time (labeled as ctf ). Two baseline policies are included
for comparison: (1) the physician’s current policy (called human), and (2) a policy picking
the treatment at random (random). The cumulative reward of all policies are shown in
Fig. 1. Perhaps surprisingly, the performance of exp and exp2 coincides with the random
policy, indicating that Aexp is unable to learn a reasonable policy, which should be better
than chance. Moreover, the interactive approach (ctf ) manages to outperform all the other
policies, despite the fact that the physician (human) performs worse than random guessing.

Puzzling questions arise at this point – first, how could the human advice be useful for
the performance of the agent even when it has full knowledge of the reward function R and
the world dynamics T? Second, how could we formalize the interactive agent in this novel
setting and systematically find its optimal policy? Our goal for the remainder of the paper
is to answer these fundamental questions in full generality (i.e., for any decision setting).

3. Modeling Autonomous Systems

Our analysis relies on the semantical framework of structural causal models (SCMs) (Pearl,
2000) . We will describe sequential decision-making systems using dynamic SCMs, which
describes causal dynamics of how the environment’s states evolve over time.

Definition 2 (Dynamic SCMs) A dynamic structural causal model (DSCM) M is a
pair of SCMs ⟨M1,M→⟩ (Pearl, 2000, Ch. 7) with domains over actions X , observed states
S, unobserved states U , and rewards Y. M1 is a SCM over initial states X(1), U (1), actions
X(1) and rewards Y (1). M→ is a SCM describing the process: for t = 2,3, . . . ,

1. U (t) is the unobserved state whose values u(t) ∈ U is decided by a function u(t) =
fu (x(t−1), s(t−1), u(t−1), ϵ(t)u ), where E(t)u is an independent noise drawn from P (ϵu)2;

2. For simplicity, we ignore ϵ
(t)
u and write u(t) = fu (x(t−1), s(t−1), u(t−1)). The same applies to fs, fy, πh.
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2. S(t) is the observed state whose values s(t) ∈ S is decided by a transition function
s(t) = fs (x(t−1), s(t−1), u([t−1,t]));

3. Y (t) is the observed reward whose values y(t) ∈ Y is decided by a reward function
y(t) = fy (x(t), s(t), u(t));

4. X(t) is the action of the human instructor where its values x(t) ∈ X. x(t) is decided
by a policy function x(t) = πh (s(t), u(t)).

The definition of DSCM is a direct translation of POMDP formalism to causal language: the
pair S(t), U (t) represents the underlying states, and S(t) for the partial observation3. Each
DSCM M is associated with a causal diagram G, which is a directed acyclic graph (DAG)
where empty nodes correspond to unobserved variables, solid nodes correspond to observed
variables, and edges represent functional (cause-and-effect) relationships (see Fig. 2).

We next model the standard autonomous agents as the experimental agents, which
interact with the environment through a series of causal interventions, oblivious to the
presence of the human instructor.

Definition 3 (Experimental Agent) An experimental agent Aexp is defined as a se-
quence of policies Πexp = π([1,t]). Each π(t) is a function deciding values of X(t) such that

x(t) = π(t) (h(t)exp), where the experimental history h
(t)
exp = {s([1,t]), x([1,t−1])} is the observed

history of Aexp up to time t.

Using Def. 3, we could model the interaction between an autonomous agent Aexp and the
environment Mdscm as an intervention on actions nodes X([1,t]), denoted by do (Πexp),
which sets values of X(t) to π(t) (h(t)exp) regardless of how they were ordinarily determined

by the human operator πh (Pearl, 2000, Ch. 7). To understand the decision process encoded
here, note that each step t, the agent starts from a state S(t) = s(t), U (t) = u(t), performs an
intervention X(t) = π (s(t)), receives a reward Y (t) = y(t), and observes S(t+1) = s(t+1). We

use Yx([1,t]) (u([1,t])) to denote the response of a variable Y to a sequence of interventions

X(1) = x(1), . . . ,X(t) = x(t). This stochastic process is summarized using the counterfac-

tual distribution P (Y (t)
x(t)
= y(t) ∣ S(t) = s(t), U (t) = u(t)), abbreviated as P (y(t)

x(t)
∣ s(t), u(t));

so does P (s(t+1)
x(t)

∣ s(t), u(t)). We assess the performance of an agent Π using the cumulative

rewards V Π = E [∑∞t=0 γtY
(t)

x(t)=π(t)
] where γ ∈ [0,1) is a discount factor.

The Markov property delineates a set of decision-making systems that could be efficiently
solved. We next define the Markov property associated with the experimental agents.

Definition 4 (Experimental Markov Property) An environment M is said to be Ex-
perimentally Markov (exp-Markov, for short) if and only if for t ≥ 1,

P (s(t+1)
x([1,t])

∣ s([1,t])
x([1,t−1])

) = P (s(t+1)
x(t)

∣ s(t)) , E [Y (t)
x([1,t])

∣ s([1,t])
x([1,t−1])

] = E [Y (t)
x(t)
∣ s(t)] , (1)

where s
([1,t])

x([1,t−1])
= {s(t)

x([1,t−1])
, s
(t−1)

x([1,t−2])
, . . . , s(1)}.

3. DSCMs are defined from an agent’s perspective. Unobserved states U (t), t = 1,2, . . . could be observable
to the human, and vice versa.
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In Def. 4, S
(t)

x([1,t−1])
is the potential response of the state S(t) to intervention do (x([1,t−1])),

which can be read as “The value that the state S(t) would be had X([1,t−1]) been x([1,t−1])”
(Halpern, 1998; Pearl, 2000). The exp-Markov property says that for an experimental agent,
the information in S([1,t]) and the causal influence of the intervention do (x([1,t])) can be best

summarized in the current state S(t) and intervention do (x(t)). For example, the MDPUC+

model of Fig. 2(c) is exp-Markov though the unobserved states U (t) = {U (t1), U (t2)} could
affect the states S(t−1), S(t). Consequently, for an exp-Markov environment M , the result-
ing autonomous system ⟨M,Aexp⟩ forms an MDP. The optimal policy Π for an MDP is
stationary where every policy function π(t) only depends on the state s(t), t = 1,2, . . . , and
is invariant to time t, which we denote by π.

Armed with these definitions, we are finally ready to analyze the medical treatment
example and see how the human advice provides critical information to the task. First
note that MDPUC+ is a generalization of the MDPUC model of Fig. 2(a), the environment
Mmdpuc is exp-Markov. The optimal policy of the autonomous agent Aexp is stationary and
takes the form of x(t) = π (s(t)). On the other hand, the physician follows a policy πh that

takes as input the values s(t),m(t), e(t). The difference in the domains of the policies π and
πh represents different capabilities of the agent and the human. In this case, the physician
possesses superior observation capacities as she could access the states M (t),E(t), which are
unavailable for the agent. The autonomous agent carries a series of interventions do (π),
which replaces the physician’s policy πh with its policy π. Since M (t),E(t) affect the values
of reward Y (t) and the next state S(t+1), the physician’s decision x′(t) could contain critical
information for the long-term health condition of the patients. Discarding the physician’s
decision x′(t) thus leads to potentially sub-optimal policies.

4. Counterfactual Agents

We will account for the human interaction in the environment using the language of SCMs.
A counterfactual agent takes the human’s advice as its intended action, and adjusts this
action using the counterfactual reasoning if a better decision is available (the intended action
is called intuition in (Bareinboim et al., 2015; Forney et al., 2017).

Definition 5 (Counterfactual Agent) A counterfactual agent Actf is defined as a pol-

icy Πctf = π([1,t]). π(t) is a function deciding values of X(t) such that x(t) = π(t) (h(t)ctf),
where the counterfactual history h

(t)
ctf = {s([1,t]), x([1,t−1]), x′([1,t])}, and x′([1,t]) is a sequence

of human’s decisions up to time t.

For an agent Actf, the evaluation of the policy Πctf is indeed a counterfactual reasoning
procedure: “Given that I am about to perform x′(t) (intended, factual) and the past history,
what the world state and reward would be had I done the action x(t) (contrary to the fact,
counter-factual)”. For concreteness, consider a counterfactual agent Actf in the MDPUC
model with the goal of maximizing the reward at t = 1. Given the observed state s(1) and
its intended action x′(1), the agent Actf decides for a new action x(1) to maximize the

expected reward Y (1), i.e., the counterfactual statement E [Y (1)
x(1)
∣ s(1), x′(1)], which can be

read as “The value that the reward Y (1) would attain had I done x(1), given that I am about
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to do x′(1) and the current state is s(1).” Note that the values of x′(1) (factual) and x(1)

(counterfactual) could be different. It follows immediately after Def. 5 that a counterfactual
agent consistently dominates an experimental agent in terms of the performance.

Corollary 6 Let the optimal policy for Aexp denoted by Π∗exp and for Actf by Π∗ctf. For
any DSCM model, V Π∗exp ≤ V Π∗ctf.

Given the space constraints, all proofs are included in Appendix B. Corol. 6 reassures
the intuition that, since the counterfactual history always covers the experimental one (i.e.,

h
(t)
exp ⊆ h

(t)
ctf), counterfactual agents are never worse than their experimental counterparts.

The following result provides a graphical condition for when the performance of Actf and
Aexp coincides, i.e., the human advice can be discarded without loss of information.

Theorem 7 For any DSCM model where the human decision is affected only by observable
variables (arrow U (t) →X(t) is not present), denoted by DSCM−, V Π∗exp = V Π∗ctf.

In words, Corol. 6 and Thm. 7 challenge the somewhat popular belief that the role
of human instructors in RL systems is to serve as data sources for agents with partially
specified models, and it is dispensable once the learning procedure is complete. These
results imply that (1) it is still better to utilize an interactive approach (Actf) even if the
information affecting the human decision has an adverse effect on its performance; (2) the
human advice is indispensable if it possesses some information about latent states (arrow
U (t) →X(t) is present), even when the agent has obtained the fully specified world model.

4.1. Optimizing Counterfactual Agents

We will next discuss methods to systematically compute the optimal policy of counterfactual
agents. We first characterize the Markov property associated with the counterfactual agent,
as it outlines sufficient statistics for Actf.

Definition 8 (Counterfactual Markov Property) An environment M is said to be
counterfactually Markov (ctf-Markov, for short) if and only if for t ≥ 1,

P (s(t+1)
x([1,t])

, x
′(t+1)

x([1,t])
∣ s([1,t])

x([1,t−1])
, x
′([1,t])

x([1,t−1])
) = P (s(t+1)

x(t)
, x
′(t+1)

x(t)
∣ s(t), x′(t)) , (2)

E [Y (t)
x([1,t])

∣ s([1,t])
x([1,t−1])

, x
′([1,t])

x([1,t−1])
] = E [Y (t)

x(t)
∣ s(t), x′(t)] , (3)

where x
′([1,t])

x([1,t−1])
= {x′(t)

x([1,t−1])
, x
′(t−1)

x([1,t−2])
, . . . , x′(1)} and s

([1,t])

x([1,t−1])
follows Def. 4.

Compared to the exp-Markov property (Def. 4), Eqs. (2) and (3) condition not only on

the observed states s
([1,t])

x([1,t−1])
but all the past human’s decisions x′([1,t]) to interventions

do (x([1,t−1])) as well. This additional term makes the independence conditions for ctf-
Markov property somewhat more involved: models that are exp-Markov are not necessarily
ctf-Markov, as shown in the next example.

Proposition 9 Mmdpuc+ (Fig. 2( c)) is not ctf-Markov.

Prop. 9 confirms that, in general, ctf-Markov property does not necessarily hold in a
exp-Markov environment. However, the ctf-Markov property is satisfiable in some settings,
which is characterized by the general graphical condition given in the next result.
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Theorem 10 Mmdpuc (Fig. 2(b)) is ctf-Markov.

For a ctf-Markov environment Mmdpuc, the interactive RL system ⟨M,Actf⟩ forms an
MDP where the human decision is included as an additional observed state. More formally,
the MDP should be constructed as follows:

Proposition 11 ⟨Mmdpuc,Actf⟩ forms an MDP ⟨Sctf,Xctf, T,R⟩, where Sctf = S × X ,
Xctf = X , and for any x, s, x′, x′′,

T ⟨s,x
′⟩

x (s′, x′′) = P (S(t+1)
X(t)=x

= s′,X(t+1)
X(t)=x

= x′′ ∣ S(t) = s,X(t) = x′) , (4)

R⟨s,x
′⟩

x = E [Y (t)
X(t)=x

∣ S(t) = s,X(t) = x′] . (5)

Prop. 11 follows immediately after the ctf-Markov property (Thm. 10). The transition T
and the reward function R are both counterfactual quantities, which can be computed by the
procedure provided in (Pearl, 2000, Thm. 7.1.7), whenever the SCM is known. Alternatively,
they can be empirically estimated using the new counterfactual randomization procedure
introduced in Bareinboim et al. (2015).

There are several standard ways of solving an MDP with the discounted expected cumu-
lative rewards optimization criterion Puterman (2014). Some use dynamic programming
(value of policy iteration), others reduce MDPs to linear programs (LPs). A discounted
MDP formed by an interactive RL system ⟨Mmdpuc,Actf⟩ can be formulated as the follow-
ing LP d’Epenoux (1963); Kallenberg (1983) (this maximization LP is the dual to the more
commonly used minimization LP in the value function coordinates):

max ∑
s,x,x′

R⟨s,x
′⟩

x ϕx(s, x′) (6)

subject to ϕx(s, x′) ≥ 0
∑
x

ϕx(s, x′) − γ∑
i,x

ϕx(i)T i
x(s, x′) = α⟨s,x′⟩

where α⟨s,x′⟩ = P (S(1) = s,X(1) = x′) specify the probility distribution over the initial state.
The optimization variables ϕx(s, x′) are called the occupation measure of a policy, where
ϕx(s, x′) is the total discounted number of times action x is executed in state s, x′. An
optimial policy for Actf is stationary and can be computed from a solution to the above
LP as π∗ctf(x∣s, x′) = ϕx(s, x′)/∑x ϕx(s, x′).

For a general environment Mdscm, it immediately follows from Prop. 9 that Mdscm is not
ctf-Markov, since DSCM is a generalization of MDPUC+. To solve for the counterfactual
agent in an environment where ctf-Markov doesn’t hold, a simple realization is to resort to
POMDPs by using the human’s decision X(t) = x′(t) as an additional observation.

Proposition 12 A RL system ⟨Mdscm,Actf⟩ forms a POMDP ⟨Sctf,Xctf,Octf, T,R,Ω⟩
where Sctf = S × U , Xctf = X , Octf = S × X , and for any x, s, u, x′, s′, u′,

T ⟨s,u⟩x (s′, u′) = P (S(t+1)
X(t)=x

= s′, U (t+1)
X(t)=x

= u′ ∣ S(t) = s,U (t) = u) ,

R⟨s,u⟩x = E [Y (t)
X(t)=x

∣ S(t) = s,U (t) = u] ,

Ωs,u (s′, x′) = P (S(t+1) = s′,X(t+1) = x′ ∣ S(t+1) = s,U (t+1) = u) .
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Since the underlying state is not perfrectly observable, the agent can maintain a belief
B(t) about the current state (s(t), u(t)) at each time step t, defined as

B(t) (s(t), u(t)) = P (s(t)
x([1,t−1])

, u
(t)

x([1,t−1])
∣ s([1,t])

x([1,t−1])
, x
′([1,t])

x([1,t−1])
)

The belief can be updated as times progresses based on Bayes’ theorem. Formally, the belief
update step for t + 1 goes as follows:

Theorem 13 Given the belief B(t), action x(t), next observed state s(t+1), and next hu-
man’s decision x′(t+1), the next belief can be updated as:

B(t+1) (s(t+1), u(t+1)) = αP (s(t+1), x′(t+1) ∣ s(t+1), u(t+1))

⋅ ∑
s(t)
∑
u(t)

P (s(t+1)
x(t)

u
(t+1)

x(t)
∣ s(t), u(t))B(t) (s(t), u(t)) (7)

where α is a normalizing constant.

Since the belief state is a sufficient statistic, the optimal policy of Actf is then the solu-
tion of a “belief state MDP” over continous space. There are several standard methods for
solving such MDPs, including witness algorithm (Littman, 1994), linear support algorithm
(Cheng, 1988), and incremental pruning (Cassandra et al., 1997), just to cite a few.

5. The Trade-Off between Autonomy and Optimality

Environment
Optimality

Autonomy
Aexp Actf

MDPUC− ✓ ✓ ✓

MDPUC ✗ ✓ ✗

MDPUC+ ✗ ✓ ✗

DSCM− ✓ ✓ ✓

DSCM ✗ ✓ ✗

Table 1: The performance of counterfactual
agents Aexp and experimental agents
Actf in canonical environments.

We start this section by summarizing in
Table 1 the results discussed so far. The
“optimality” column indicates whether the
corresponding agent could obtain the opti-
mal policy (using the counterfactual agent
Actf as the baseline); a check (cross) mark
in Aexp under “optimality” represents that
the experimental agent is (is not) able to
achieve the optimal performance in the en-
vironment of the corresponding row, com-
pared to its counterfactual counterpart. In
an arbitrary environment, full autonomy
(represented by the “autonomy” column)
can only be achieved when it is not at the cost of the optimality, i.e., the performance
of the experimental Aexp and counterfactual agent Actf coincides. These results conveys
an inherent trade-off between optimality and autonomy when designing RL systems – while
full autonomy is preferable, the agent could potentially achieve better performance by lever-
aging the human’s capabilities. We model this trade-off as a constrained transfer of control
(TOC) problem such that a system tries to maximize its rewards while repeatedly trans-
ferring between an experimental and a counterfactual agent, subject to the total time of
the counterfactual agent (using human decision) is no more than δ ratio of the total run-
ning time. To solve this problem, we first define hybrid agents, which combines both the
experimental Aexp and counterfactual Actf modes of reasoning.

9
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Definition 14 (Hybrid Agent) A hybrid agent Ahyb is an agent following a policy Πhyb =
(π○fa)([1,t]) and maintaining an internal state A(t) ∈ {a0, a1} (a0 for Aexp and a1 for Actf).

(π ○fa)(t) is a composite function in the form of π(t) (h(t)hyb, x′(t), f
(t)
a (h(t)hyb)), where h

(t)
hyb is

the history of the hybrid agent (includes s([1,t]), x([1,t]), and partially x′([1,t])), the function

a(t) = f (t)a (h(t)hyb) decides a value of A(t) and π(t) decides the decision x(t) as follows:

π(t) (h(t)hyb, x′(t), a(t)) =
⎧⎪⎪⎨⎪⎪⎩

π
(t)
0 (h

(t)
hyb) , if a(t) = a0

π
(t)
1 (h

(t)
hyb, x

′(t)) , if a(t) = a1
(8)

A hybrid RL system is defined as the pair ⟨Mdscm,Ahyb⟩ proactively deciding whether it
considers the human decision. The internal state A(t) is a switch variable indicating the
current running mode the system is in (a0 for experimental or a1 for counterfactual). The
human decision x′(t) is included as an evidence to decide for agent’s decision x(t) if A(t) = a1,
and ignored otherwise. We now consider algorithms to solve for such hybrid systems when
the environment is ctf-Markov and full autonomy cannot be achieved (e.g., Mmdpuc). The
following result establishes the relation between hybrid systems and MDPs.

Proposition 15 A hybrid system ⟨Mmdpuc,Ahyb⟩ forms an MDP ⟨Shyb,Xhyb, T,R⟩ where
Shyb = S × X , Xhyb = X ×A, and for any a, x, s, x′, s′, x′′,

T
⟨s,x′⟩
⟨x,a⟩

(s′, x′) = P (S(t+1)
X(t)=x

= s′,X(t+1)
X(t)=x

= x′′ ∣ S(t) = s,X(t) = x′) ,

R
⟨s,x′⟩
⟨x,a⟩

= E [Y (t)
X(t)=x

∣ S(t) = s,X(t) = x′] .

This result follows immediately after Prop. 11, as A(t) is an auxiliary action which does
not directly affect the environment. Prop. 15 allows us to translate the constrained TOC
problem to a constrained MDP problem. The optimal policy of Ahyb can be computed as
a solution to the LP specified in Eq. (6) with additional constraints as follows:

∑
i,x

ϕ⟨x,a1⟩(i) ≤ δ ∑
i,x,a

ϕ⟨x,a⟩(i) (9)

ϕ⟨x,a0⟩(s, x
′)/∑

x

ϕ⟨x,a0⟩(s, x
′) = ∑

x′
ϕ⟨x,a0⟩(s, x

′)/ ∑
x,x′

ϕ⟨x,a0⟩(s, x
′) (10)

∑
x

ϕ⟨x,a⟩(s, x′)/∑
x,a

ϕ⟨x,a⟩(s, x′) = ∑
x,x′

ϕ⟨x,a⟩(s, x′)/ ∑
x,a,x′

ϕ⟨x,a⟩(s, x′) (11)

Eq. (9) ensures that for system ⟨Mmdpuc,Ahyb⟩, the total time running in counterfactual
mode (a1) is no more than δ ratio of the total running time (discounted so that future visits
count less than present ones). Eq. (10) ensures that for A(t) = a0, the policy π does not
take the human decision x′(t) as an input.Eq. (11) reflects the functional constraint that fa
is a Markovian policy only depends on the current state s(t). This mathematical program
forms a polynomial optimization problem (Tuy et al., 1998), which is neither linear nor
convex (due to Eqs. (10) to (11)). Despite its difficulty, there are several efficient methods
of polynomial optimization that can be used in this case, for example: the RLT method
(Sherali and Adams, 2013), and a SDP relaxation method (Lasserre, 2001).

10
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(a) Online Learning (b) Hybrid Planning (c) Hybrid Planning

Figure 3: (a) Simulations comparing performance of experimental (Aexp) and counterfac-
tual (Actf) agents in online learning settings; (b-c) Simulations comparing the
performance (b) and composition (c) of exp and ctf modes of hybrid agents. X-
axis represents the total episodes, and Y -axis in (c) represents the ratio of total
time for agents running in the exp or ctf mode during executions.

6. Applications and Experiments

In this section, we operationalize the learning algorithms for experimental (Aexp), counter-
factual (Actf), and hybrid (Ahyb) agents in the context of the medical treatment problem
described in Sec. 2. We assess agents’ performance using the cumulative reward (CR) and
the average reward (AR). Overall, we find that simulation results confirm that the counter-
factual approach achieves a higher expected return, even when human decisions are poor;
the polynomial program formulation effectively balances between autonomy and optimality,
subject to a budget constraint over available human input.

Experiment 1: Offline Planning. Since Mmdpuc is both exp-Markov and ctf-Markov
(Thm. 10), the best possible policies of Aexp and Actf can be computed using standard
MDP algorithms following the construction given in Prop. 11, labeled as exp and ctf. The
performance of agents Aexp and Actf are compared with the baseline policies described
in Sec. 2 (human and random). An experimental policy computed through POMDP algo-
rithms (called exp2 ) is also included. Simulations, shown in Fig. 1, support the efficiency
of the counterfactual approach, revealing that (1) both experimental policies obtained by
standard MDP (exp, CR = 1.2162 × 104) and POMDP (exp2, CR = 1.2164 × 104) coincide
with random policy (CR = 1.2147 × 104); (2) the counterfactual agent Actf (ctf, CR =
1.965 × 104) consistently outperforms the experimental agent Aexp, even when the human
performs worse than random guessing (human, CR = 4.6492 × 103).

Experiment 2: Online Learning. We next show that the challenge considered here is
not only bounded to offline-planning, but appears compounded in the online learning setting
when the agent has only an incomplete model of the environment. We apply Mormax (Szita
and Szepesvári, 2010) for experimental and counterfactual agents since Mmdpuc is both exp-
Markov and ctf-Markov. To empirically estimate system dynamics of Actf (Prop. 11), we
follow the counterfactual randomization procedure in (Bareinboim et al., 2015).

We collect trajectories for both experimental and counterfactual agents, respectively,
exp and ctf. We also deploy a counterfactual agent Actf where the transition function T
and the reward function R are warm-started with 5000 observational samples (labeled as

11
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ctf+, following the composition axiom (Pearl, 2000, pp. 229). That is, for any x, s, x′, s′, x′′,

T ⟨s,x⟩x (s′, x′′) = P (S(t+1) = s′,X(t+1) = x′′ ∣ S(t) = s,X(t) = x) , (12)

R⟨s,x⟩x = E [Y (t) ∣ S(t) = s,X(t) = x] . (13)

The two baseline policies previously described, obs and random, are also included. The
simulations (Fig. 3(a)) support the counterfactual approach. In fact, there is a significant
difference in rewards experienced by counterfactual agents (AR = 79.2438 for ctf+, AR =
79.2837 for ctf ) when compared to the experimental agent exp (AR = 50.1900), despite
the fact that human (AR = 19.1913) performs poorly, even worse than random guessing
(random, AR = 49.2212). In addition, ctf+ demonstrates better convergence rate (after 2
episodes) compared to ctf (does not converge until 25 episodes).

Experiment 3: Hybrid Planning. We apply the methods discussed in Sec. 5 to obtain
the optimal policy for hybrid agents Ahyb in the constrained TOC setting. Recall that δ is
a constraint over the ratio between the total time of running the counterfactual approach
(using human input) and the total running time of the system. We compute policies for
three hybrid agents with the ratio constraint δ set to 0.1,0.5,0.9, labeled as hyb1, hyb5 and
hyb9, respectively. The two baseline policies exp and ctf are also included for comparison.
The simulations (Fig. 3(b)) reveal that the performance of hybrid agents converges to the
counterfactual agent as δ → 1. In particular, hyb1 (δ = 0.1) shows limited performance
improvement (CR = 1.3023×104) over the autonomous approach (exp, CR = 1.2162×104),
while hyb9 (δ = 0.9) experiences higher rewards (CR = 1.8736 × 104), which is comparable
to the counterfactual agent ctf (CR = 1.965 × 104). Predictably, the performance of hyb5
(δ = 0.5, CR = 1.558×104) lies in between hyb1 and hyb9. We show the composition graph of
experimental and counterfactual modes in Fig. 3(c); we also includes two hybrid agents with
δ = 0.3,0.7. The simulations support that the polynomial optimization reduction worked
as expected, where hyb1 (P (a0) = P (A(t) = a0) = 0.88) and hyb3 (P (a0) = 0.6629) tend to
stay in the autonomous mode, while hyb7 (P (a0) = 0.3366) and hyb9 (P (a0) = 0.1239) ask
for human involvement frequently; unsurprisingly, hyb5 kept neutral.

7. Conclusions

We investigated a novel interactive reinforcement learning setting where the human instruc-
tor and the RL agent do not perceive the world in the same fashion, but share the reward and
transition functions. We showed that the agent could be constrained to find a sub-optimal
policy if it does not take the human into the loop. We proposed a new type of interactive
agent, which could account for the human in real-time using counterfactual reasoning. Our
analysis revealed that the counterfactual approach dominates standard methods even if the
human instructor performs poorly, possibly worse than random guessing. In fact, the hu-
man should be kept “in the loop” as long as it has access to information about the tasks at
hand, even after the agent completes its learning and builds a model of the environment.
To resolve the tension between the autonomy and optimality of the system, we proposed
a novel RL task subject to a budget constraint. Automated decision-making systems are
playing an increasingly prominent role in society, and we hope this work constitutes a step
towards a better understanding of the principles underlying human-machine interactions.
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Appendix A. Parametrizations

In this section, we provide the full parametrizations of the medical treatment example used
in the paper. Let U (t) = {M (t),E(t)} where M (t),E(t) are binary variables drawn from
distributions P (m(t) = 0) = 1

2 , P (e
(t) = 0) = 1

2 . The values of X(t) are decided by

X(t) = fx (s(t),m(t), e(t)) = s(t) ⊕m(t) ⊕ e(t), (14)

where ⊕ represents the “xor” operator. The reward distribution P (y(t) ∣ s(t),m(t), e(t), x(t))
and the transition distribution P (s(t+1) ∣ s(t), s(t)) are provided in Tables 2 and 3. The
entries encode the probabilities for Y (t) = 1. The the human’s decision (i.e., following fx)
are indicated by asterisks. The optimal policy for the counterfactual agent Actf is to always
take the opposite of the physician’s decision, i.e., X(t) = πctf (s(t), x′(t)) = ¬x′(t).

S(t) = 0
M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1
X(t) = 0 ∗0.2 0.9 0.8 ∗0.3
X(t) = 1 0.9 ∗0.2 ∗0.3 0.8

S(t) = 1
M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1
X(t) = 0 0.7 ∗0.2 ∗0.1 0.8

X(t) = 1 ∗0.2 0.7 0.8 ∗0.1

Table 2: Reward probability table for Y (t) = 1, which is P (Y (t) = 1 ∣ s(t),m(t), e(t), x(t)).
The human’s decision under S(t),M (t),E(t) are indicated by asterisks.

S(t) = 0 S(t) = 1
X(t) = 0 0.9 0.3

X(t) = 1 0.7 0.8

Table 3: The transition probability table P (S(t+1) = 0 ∣ s(t), x(t)).

Appendix B. Proofs

We start by introducing the notations and theorems used throughout the proofs. Recall
that we use X([i,j]) to represent the sequence (X(i),X(i+1), . . . ,X(j)). X([i,j]) is an empty
sequence if i > j. We will also apply the following axioms of counterfactual queries.

Axiom 16 (The Axioms of Counterfactuals (Pearl, 2000)) In all causal models, com-
position, effectiveness and reversibility properties hold.
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Composition: For any three sets of endogenous variables X,Y, and W in a causal model,
we have:

Wx = w⇒ Yxw = Yx

Effectiveness: For any all sets of variables X and W ,

Xxw = x

Reversibility: For any two variables Y and W and any set of variables X,

(Yxw = y)&(Wxy = w) ⇒ Yx = y

Composition, effectiveness and reversibility are proved to be sound and complete in
all causal models (Halpern, 1998). To translated the assumptions embodied in the graph-
ical model into the language of counterfactuals, we also introduces two rules: exclusion
restrictions and independence restrictions.

Lemma 17 (Exclusion restrictions (Pearl, 2000)) For every variables Y having par-
ents PAY for every set of variables Z ⊂ V , V disjoint of PAY , we have:

YpaY = YpaY ,Z

Lemma 18 (Independence restrictions (Pearl, 2000)) If Z1, . . . , Zk is any set of nodes
in V not connected to Y via paths containing only U variables, we have:

(YpaY ⊥⊥ Z1paZ1
, . . . , ZkpaZk

)

Corollary 19 Let the optimal policy for Aexp denoted by Π∗exp and for Actf by Π∗ctf. For
any DSCM model, V Π∗exp ≤ V Π∗ctf.

Proof Since (s([1,t]), x([1,t−1])) ⊆ (s([1,t]), x′([1,t]), x([1,t−1])), we have Π∗exp ∈ Fctf. This

implies V Π∗exp ≤ V Π∗ctf .

Theorem 7 For any DSCM model where the human decision is affected only by observable
variables (arrow U (t) →X(t) is not present), denoted by DSCM−, V Π∗exp = V Π∗ctf.

Proof Since Π∗ctf always dominates Π∗exp, it suffices to show the other direction V Π∗ctf(s(1)) ≤
V Π∗exp . Suppose Π∗ctf = π

∗([1,t])
ctf ,Π∗exp = π

∗([1,t])
exp , we write V Π∗ctf as:

V Π∗ctf = ∑
s([1,t])

∑
u([1,t])

∑
x([1,t])

∑
y(t)

y(t)P (y(t)
s(t),u(t),x(t)

)

⋅ P (s(1), u(1))
t

∏
i=2

P (s(i)
x(i−1),u(i),u(i−1),s(i−1)

)P (u(i)
u(i−1),s(i−1),x(i−1)

)

⋅
t

∏
j=1

π
∗(j)
exp (x(j) ∣ h

(j)
exp)
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Similarly, we can write V Π∗exp as:

V Π∗exp = ∑
x′([1,t])

∑
s([1,t])

∑
u([1,t])∈Ut

∑
x([1,t])

∑
y(t)

y(t)P (y(t)
s(t),u(t),x(t)

)

⋅ P (s(1), u(1))
t

∏
i=2

P (s(i)
x(i−1),u(i),u(i−1),s(i−1)

)P (u(i)
u(i−1),s(i−1),x(i−1)

)

⋅
t

∏
j=1

P (x′(j)
s(j)
)π∗(j)ctf (x(j) ∣ h

(j)
ctf)

Since h
(t)
ctf = h

(t)
exp ∪ {x′(1), . . . , x

′(t)

x([1,t−1])
}, this turns to

V Π∗exp = ∑
s([1,t])

∑
u([1,t])

∑
x([1,t])

∑
y(t)

y(t)P (y(t)
s(t),u(t),x(t)

)

⋅ P (s(1), u(1))
t

∏
i=2

P (s(i)
x(i−1),u(i),u(i−1),s(i−1)

)P (u(i)
u(i−1),s(i−1),x(i−1)

)

⋅ ∑
x′([1,t])

t

∏
j=1

P (x′(j)
s(j)
)π∗(j)ctf (x(j) ∣ h

(j)
ctf)

Term 1 defines a policy of the experimental agent after summing out x′([1,t]), which we
denote by Πexp. Since Π

∗
exp is the optimal policy for the experimental agent, it follows that

V Π∗ctf = V Πexp ≤ V Π∗exp . This completes the proof.

Proposition 20 Mmdpuc+ (Fig. 2( c)) is not ctf-Markov.

Proof We prove this statement by constructing a model MMDPUC+ where ctf-Markov does
not hold. Suppose X ,Y,S,U are all binary domains {0,1}, U (t1), U (t2) follow distributions
P (U (t1) = 0) = P (U (t2) = 0) = 0.6. In this model, values of X(t) are decided by the
function x(t) = u(t1) ⊕ u(t2) ⊕ s(t). Values of S(t+1) are decided by the function s(t+1) =
x(t) ⊕ u(t1) ⊕ u(t+1,2) ⊕ s(t). The initial state S(1) follows the function s(t) = u(12). Without
any intervention, values of S(1),X(1), S(2),X(2) thus are

s(1) = u(12), x(1) = u(11) ⊕ u(12) ⊕ s(1) = u(11)

s(2) = x(1) ⊕ u(11) ⊕ u(22) ⊕ s(1) = u(12) ⊕ u(22)

x(2) = u(21) ⊕ u(22) ⊕ s(2) = u(12) ⊕ u(21)

s(3) = x(2) ⊕ u(21) ⊕ u(31) = u(12) ⊕ u(31)

After intervention do (X(1) = x1), S(1)x1 , S
(2)
x1 ,X

(2)
x1 are given by

s(1) = u(12)

s(2) = x1⊕ u(11) ⊕ u(22) ⊕ s(1) = x1⊕ u(11) ⊕ u(12) ⊕ u(22)

x(2) = u(21) ⊕ u(22) ⊕ s(2) = x1⊕ u(11) ⊕ u(12) ⊕ u(21)
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After intervention do (X(1) = x1), do(X(2) = x2), S(3)x1,x2 are given by

s(3) = x2⊕ u(21) ⊕ u(32) ⊕ s(2) = x1⊕ x2⊕ u(11) ⊕ u(12) ⊕ u(21) ⊕ u(22) ⊕ u(32)

Note that S
(3)
x1,x2 contains values u(11), u(12), about which the observation x(1) = u(11),

s(1) = u(12) provide perferct information. Moreover, this information is not included in S
(2)
x1

and X
(2)
x2 , since values of u(11), u(12) are completely masked by latent variales U (22), U (21).

To see this, one can compute their distribution, and find P (S(2)x1 = 0) = P (X
(2)
x1 = 0) = 0.5.

Therefore, we have S
(3)

x([1,2])
/⊥⊥ S(1),X(1)∣S(2)

x(1)
,X
(2)

x(1)
, i.e., MMDPUC+ is not ctf-Markov.

Theorem 10 Mmdpuc (Fig. 2(b)) is ctf-Markov.

Proof We will focus on the time t = 3. The proof for the general case follows naturally.
Consider Fig. 1(b) which describes MDPUC at time t = 3, we want to show

P (s(3)
x([1,2])

, x
′(3)

x([1,2])
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x

′(1)) = P (s(3)
x(2)

, x
′(3)

x(2)
∣ s(2), x′(2)) , (15)

P (y(2)
x([1,2])

∣ s(2)
x(1)

, x
′(2)

x(1)
, s(1), x

′(1)) = P (y(2)
x(2)
∣ s(2), x′(2)) . (16)

Since Fig. 1(b) consists of 3 C-components: S(1),{X(1), Y (1), S(2)}, {X(2), Y (2), S(3)} and
{X(3), Y (3), S(4)}, The independence restrictions implies

(s(3)
x(2),s(2)

, x
′(3)

s(3)
, x
′(2)

s(2)
⊥⊥ s(1), x′(1)

s(1)
, s
(2)

x(1),s(1)
) , (17)

where s([1,3]), y([1,2]), x([1,2]), x′([1,2]) are arbitrary values. By composition and weak union
axioms, we have

(s(3)
x(2),s(2)

, x
′(3)

s(3)
⊥⊥ s(1), x′(1) ∣ s(2)

x(1)
, x
′(2)

x(1)
) . (18)

Let x′(1) = x(1) and apply composition and weak union axioms again.

(s(3)
x(2),s(2)

, x
′(3)

s(3)
⊥⊥ s(1), x(1) ∣ s(2), x′(2)) . (19)

Eq. (19) implies

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2)) = P (s(3)

x(2),s(2)
, x
′(3)

s(3)
∣ s(2), x′(2), s(1), x(1)) . (20)

By Composition axiom, we move x(1) to subscripts,

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2), s(1), x(1)) = P (s(3)

x(2),s(2)
, x
′(3)

s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x(1)) (21)

= P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
) . (22)
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The last step holds by the independence implied by Eq. (18). Since x(1) in Eq. (18) can be
any value, let x(1) = x′(1) and apply Eq. (18) again,

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
) = P (s(3)

x(2),s(2)
, x
′(3)

s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)) (23)

= P (s(3)
x([1,2]),s(2)

, x
′(3)

x([1,2]),s(3)
, ∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)) . (24)

The last step holds, since s
(3)

x(2),s(2)
= s(3)

x([1,2]),s(2)
and x

′(3)

s(3)
= x′(3)

x([1,2]),s(3)
(Exclusion Restric-

tions). Together, we have

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2)) = P (s(3)

x([1,2]),s(2)
, x
′(3)

x([1,2]),s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)) . (25)

We can rewrite

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2)) = ∑

x′(1)∈X,s′(1)∈S

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2), s′(1), x′(1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term1

⋅ P (s′(1), x′(1) ∣ s(2), x′(2)) .
(26)

Applying Composition axiom and Exclusion Restrictions rule turns Term 1 into:

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2), s′(1), x′(1)) = P (s(3)

x(2)
, x
′(3)

x(2)
∣ s(2), x′(2), s′(1), x′(1)) . (27)

Replace Term 1 with Eqs. (26) and (27) equals to:

P (s(3)
x(2),s(2)

, x
′(3)

s(3)
∣ s(2), x′(2)) = ∑

x′(1)∈X,s′(1)∈S

P (s(3)
x(2)

, x
′(3)

x(2)
, s′(1), x′(1) ∣ s(2), x′(2)) (28)

= P (s(3)
x(2)

, x
′(3)

x(2)
∣ s(2), x′(2)) (29)

Applying Composition axiom and Exclusion Restrictions gives:

P (s(3)
x([1,2]),s(2)

, x
′(3)

x([1,2]),s(3)
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)) = P (s(3)

x([1,2])
, x
′(3)

x([1,2])
∣ s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1))

(30)

Together with Eqs. (25), (29) and (30), we prove Eq. (15). Eq. (16) can be proved with the
same steps but replacing s(3) with y(2).

Proposition 21 A RL system ⟨Mdscm,Actf⟩ forms a POMDP ⟨Sctf,Xctf,Octf, T,R,Ω⟩
where Sctf = S × U , Xctf = X , Octf = S × X , and for any x, s, u, x′, s′, u′,

T ⟨s,u⟩x (s′, u′) = P (S(t+1)
X(t)=x

= s′, U (t+1)
X(t)=x

= u′ ∣ S(t) = s,U (t) = u) ,

R⟨s,u⟩x = E [Y (t)
X(t)=x

∣ S(t) = s,U (t) = u] ,

Ωs,u (s′, x′) = P (S(t+1) = s′,X(t+1) = x′ ∣ S(t+1) = s,U (t+1) = u) .
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Proof To construct a POMDP from a general system ⟨Mdscm,Actf⟩, we treat the pair
(U (t), S(t)) as the underlying state, and use the its observed part S(t) and human decision
X(t) as observations. The transition function T and reward function R follows immediate
after this construction. The human decision X(t) = x′(t) is fully decided by the underly-
ing state (U (t), S(t)), as they are the only parents of node X(t) in Fig. 2(a). This gives
distribution over observations

Ωs,u(s′, x′) = P (S(t+1) = s′,X(t+1) = x′∣S(t+1) = s,U (t+1) = u).

This completes the proof.

Theorem 13 Given the belief B(t), action x(t), next observed state s(t+1), and next hu-
man’s decision x′(t+1), the next belief can be updated as:

B(t+1) (s(t+1), u(t+1)) = αP (s(t+1), x′(t+1) ∣ s(t+1), u(t+1))

⋅ ∑
s(t)
∑
u(t)

P (s(t+1)
x(t)

u
(t+1)

x(t)
∣ s(t), u(t))B(t) (s(t), u(t)) (7)

where α is a normalizing constant.

Proof By Bayes’ rule,

B′(t+1) (s(t+1), u(t+1)) = P (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
∣ s(t+1)

x([1,t])
, x
′(t+1)

x([1,t])
, h
(t)
ctf) (31)

= αP (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
, x
′(t+1)

x([1,t])
∣ h(t)ctf) (32)

= αP (s(t+1)
x([1,t])

, x
′(t+1)

x([1,t])
∣ s(t+1)

x([1,t])
, u
(t+1)

x([1,t])
, h
(t)
ctf) (33)

⋅ P (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
∣ h(t)ctf) . (34)

A POMDP is Markov if S(t), U (t) is observed. By the Markov property, this turns into:

B′(t+1) (s(t+1), u(t+1)) = αP (s(t+1), x′(t+1) ∣ s(t+1), u(t+1))P (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
∣ h(t)ctf) . (35)

By expanding on s
(t)

x([1,t−1])
, u
(t)

x([1,t−1])
and the Markov property,

P (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
∣ h(t)ctf) (36)

= ∑
s(t)

,∑
u(t)

P (s(t+1)
x([1,t])

, u
(t+1)

x([1,t])
∣ s(t)

x([1,t−1])
, u
(t)

x([1,t−1])
, h
(t)
ctf)P (s

(t)

x([1,t−1])
, u
(t)

x([1,t−1])
∣ h(t)ctf) (37)

= ∑
s(t)
∑
u(t)

P (s(t+1)
x(t)

, u
(t+1)

x(t)
∣ s(t), u(t))P (s(t)

x([1,t−1])
, u
(t)

x([1,t−1])
∣ h(t)ctf) . (38)

Note that P (s(t)
x([1,t−1])

, u
(t)

x([1,t−1])
∣ h(t)ctf) is the belief B′(t) (s(t), u(t)) at time t. Together with

Eqs. (35) and (38), we prove the statement.
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